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Abstract. It was shown before that the NP-hard problem of determin-
istic finite automata (DFA) identification can be translated to Boolean
satisfiability (SAT). Modern SAT-solvers can efficiently tackle hard DFA
identification instances. We present a technique to reduce SAT search
space by enforcing an enumeration of DFA states in breadth-first search
(BFS) order. We propose symmetry breaking predicates, which can be
added to Boolean formulae representing various DFA identification prob-
lems. We show how to apply this technique to DFA identification from
both noiseless and noisy data. The main advantage of the proposed app-
roach is that it allows to exactly determine the existence or non-existence
of a solution of the noisy DFA identification problem.

Keywords: Grammatical inference · Boolean satisfiability · Learning
automata · Symmetry breaking techniques

1 Introduction

Deterministic finite automata (DFA) are models that recognize regular lan-
guages [1], therefore the problem of DFA identification (induction, learning) is
one of the best studied [2] in grammatical inference. The identification problem
consists of finding a DFA with minimal number of states that is consistent with
a given set of strings with language attribution labels. This means that such
a DFA rejects the negative example strings and accepts the positive example
strings. It was shown in [3] that finding a DFA with a given upper bound on its
size (number of states) is an NP-complete problem. Besides, in [4] it was shown
that this problem cannot be approximated within any polynomial.

Despite this theoretical difficulty, several efficient DFA identification algo-
rithms exist [2]. The most common approach is the evidence driven state-merging
(EDSM) algorithm [5]. The key idea of this algorithm is to first construct an aug-
mented prefix tree acceptor (APTA), a tree-shaped automaton, from the given
labeled strings, and then to iteratively apply a state-merging procedure until
no valid merges are left. Thus EDSM is a polynomial-time greedy method that
tries to find a good local optimum. EDSM participated in the Abbadingo DFA
learning competition [5] and won it (in a tie). To improve the EDSM algorithm
several specialized search procedures were proposed, see, e.g., [6,7]. One of the
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most successful approaches is the EDSM algorithm in the red-blue framework [5],
also called the Blue-fringe algorithm.

The second approach for DFA learning is based on evolutionary computa-
tion; early work includes [8,9]. Later the authors of [10] presented an effective
scheme for evolving DFA with a multi-start random hill climber, which was used
to optimize the transition matrix of the identified DFA. A so-called smart state
labeling scheme was applied to choose the state labels optimally, given the tran-
sition matrix and the training set. Authors emphasized that smart selection of
state labels gives the evolutionary method a significant boost which allowed it
to compete with the EDSM. Authors find that the proposed evolutionary algo-
rithm (EA) outperforms the EDSM algorithm on small target DFAs when the
training set is sparse. For larger DFAs with 32 states, the hill climber fails and
EDSM then clearly outperforms it.

The challenge of the GECCO 2004 Noisy DFA competition [11] was to learn
the target DFA when 10 percent of the given training string labels had been
randomly flipped. In [12] Lucas and Reynolds show that within limited time EA
with smart state labeling is able to identify the target DFA even at such high
noise level. Authors compared their algorithm with the results of the GECCO
competition and found that EA clearly outperformed all the entries. Thereby it
is the state-of-the-art technique for learning DFA from noisy training data.

In several cases the best solution for noiseless DFA identification is the
translation-to-SAT technique [13], which was altered to suit the StaMInA (State
Machine Inference Approaches) competition [14] and ultimately won. The main
idea of that algorithm is to translate the DFA identification problem to Boolean
satisfiability (SAT). Thus we are able to use highly optimized modern DPLL-
style SAT solving techniques [15]. The translation-to-SAT approach was also
used to efficiently tackle problems such as bounded model checking [16], solving
SQL constraints by incremental translation [17], analysis of JML-annotated Java
sequential programs [18], extended finite-state machine induction [19].

Many optimization problems exhibit symmetries – groups of solutions which
can be obtained from each other via some simple transformations. To speed up
the solution search process we can reduce the problem search space by perform-
ing symmetry breaking. In DFA identification problems the most straightforward
symmetries are groups of isomorphic automata. The idea of avoiding isomorphic
DFAs by fixing state numbers in breadth-first search (BFS) order was used in the
state-merging approach [20] (function NatOrder) and in the genetic algorithm
from [21] (Move To Front reorganization). Besides, in [13] symmetry breaking
was performed by fixing some colors of the APTA vertices from a clique pro-
vided by a greedy max-clique algorithm was applied in a preprocessing step of
translation-to-SAT technique.

In this paper we propose new symmetry breaking predicates [15] which can
be added to Boolean formulae representing various DFA identification problems.
These predicates enforce DFA states to be enumerated in BFS order. Proposed
predicates cannot be applied with the max-clique technique [13] at the same time,
but our approach is more flexible. To show the flexibility of the approach, we
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draw our attention to the case of noisy DFA identfication. Therefore we propose
a modification of the noiseless translation-to-SAT for the noisy case (Section 3).
We show that the previously proposed max-clique technique is not applicable in
this case while our BFS-based approach is. The main advantage of our approach
is that we can determine existence or non-existence of a solution in this case.
Experiments showed that using BFS-based symmetry breaking predicates can
significantly reduce the time of algorithm execution. Also we show that our
strategy outperforms the current state-of-the-art EA from [12] if the number of
the target DFA states, noise level and number of strings are small.

2 Encoding DFA Identfication into SAT

The goal of DFA identification is to find a smallest DFA A such that every string
from S+, a set of positive examples, is accepted by A, and every string from S−,
a set of negative examples, is rejected. The size of A is defined as the number
of states C it contains. The alphabet Σ = {l1, . . . , lL} of the sought DFA A is
the set of all L symbols from S+ and S−. The example of the smallest DFA
for S+ = {ab, b, ba, bbb} and S− = {abbb, baba} is shown in Fig. 1. In this work
we assume that DFA states are numbered from 1 to C and the start state has
number 1.

Fig. 1. An example of a DFA

In [13] Heule and Verwer proposed a compact translation of DFA identifi-
cation problem into SAT. Here we briefly review the proposed technique, since
our symmetry breaking predicates supplement it. The first step of both state-
merging and translation-to-SAT techniques is augmented prefix tree acceptor
(APTA) construction from the given examples S+ and S−. APTA is a tree-
shaped automaton such that paths corresponding to two strings reach the same
state v if and only if these strings share the same prefix in which the last symbol
corresponds to v. We denote by V the set of all APTA states; by vr – the APTA
root; by V+ – the set of accepting states; and by V− – the set of rejecting states.
Moreover, for state v (except vr) we denote its incoming symbol as l(v) and its
parent as p(v). The APTA for S+ and S− mentioned above is shown in Fig. 2a.

The second step of the technique proposed in [13] is the construction of the
consistency graph (CG) for the obtained APTA. The set of nodes of the CG
is identical to the set of APTA states. Two CG nodes v and w are connected
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(a) An example of an APTA for S+ =
{ab, b, ba, bbb} and S− = {abbb, baba}

(b) The consistency graph for
APTA from Fig. 2a

Fig. 2. An example of APTA and its consistency graph

with an edge (and called inconsistent) if merging v and w in APTA results in an
inconsistency: an accepting state is merged with a rejecting state. Let E denote
the set of CG edges. The CG for APTA of Fig. 2a is shown in Fig. 2b.

The key part of the algorithm is translating the DFA identification problem
into a Boolean folmula in conjunctive normal form (CNF) and using a SAT solver
to find a satisfying assignment. For a given set of examples and fixed DFA size
C the solver returns a satisfying assignment (that defines a DFA with C states
that is compliant with S+ and S−) or a message that it does not exist. The main
idea of this translation is to use a distinct color for every state of the identified
DFA and to find a consistent mapping of APTA states to colors. Three types of
variables were used in the proposed compact translation:

1. color variables xv,i ≡ 1 (v ∈ V ; 1 � i � C) iff APTA state v has color i;
2. parent relation variables yl,i,j ≡ 1 (l ∈ Σ; 1 � i, j � C) iff DFA transition

with symbol l from state i ends in state j;
3. accepting color variables zi ≡ 1 (1 � i � C) iff DFA state i is accepting.

Direct encoding, described in [13], uses only variables xv,i; variables yl,i,j
and zi are auxiliary and are used in compact encoding predicates, which are
described below.

The compact translation proposed in [13] uses nine types of clauses:

1. xv,i ⇒ zi (v ∈ V+; 1 � i � C) – definitions of zi values for accepting states
(¬xv,i ∨ zi);

2. xv,i ⇒ ¬zi (v ∈ V−; 1 � i � C) – definitions of zi values for rejecting states
(¬xv,i ∨ ¬zi);

3. xv,1 ∨ xv,2 ∨ . . . ∨ xv,C (v ∈ V ) – each state v has at least one color;
4. xp(v),i ∧ xv,j ⇒ yl(v),i,j (v ∈ V \ {vr}; 1 � i, j � C) – a DFA transition is set

when a state and its parent are colored (yl(v),i,j ∨ ¬xp(v),i ∨ ¬xv,j);
5. yl,i,j ⇒ ¬yl,i,k (l ∈ Σ; 1 � i, j, k � C; j < k) – each DFA transition can

target at most one state (¬yl,i,j ∨ ¬yl,i,k);
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6. ¬xv,i ∨ ¬xv,j (v ∈ V ; 1 � i < j � C) – each state has at most one color;
7. yl,i,1 ∨ yl,i,2 ∨ . . . ∨ yl,i,C (l ∈ Σ; 1 � i � C) – each DFA transition must

target at least one state;
8. yl(v),i,j ∧ xp(v),i ⇒ xv,j (v ∈ V \ {vr}; 1 � i, j � C) – state color is set when

DFA transition and parent color are set (¬yl(v),i,j ∨ ¬xp(v),i ∨ xv,j);
9. xv,i ⇒ ¬xw,i ((v, w) ∈ E; 1 � i � C) – the colors of two states connected

with an edge in the consistency graph must be different (¬xv,i ∨ ¬xw,i).

Thus, the constructed formula consists of O(C2|V |) clauses and, if the SAT
solver finds a solution, we can identify the DFA.

To find a minimal DFA, authors use iterative SAT solving. Initial DFA size
C is equal to the size of a large clique found in the CG. To find that clique,
a greedy algorithm proposed in [13] can be applied. Then the minimal DFA is
found by iterating over the DFA size C until the formula is satisfied.

The found clique was also used to perform symmetry breaking: in any valid
coloring of a graph, all states in a clique must have a different color. Thus, we
can fix the state colors in the clique in a preprocessing step. Later we will see
that the max-clique symmetry breaking is not compatible with the one proposed
in this paper.

To significantly reduce the SAT search space, the authors applied several
EDSM steps before translation to SAT. Since EDSM cannot guarantee the min-
imality of solution, we will omit the consideration of this step in our paper.

3 Learning DFA from Noisy Samples

The translation described in the previous section deals with exact DFA identifi-
cation. In this section we show how to modify the translation in order to apply
it to noisy examples. We assume that not more than K attribution labels of the
given training strings were randomly flipped. Solving this problem was the goal
of the GECCO 2004 Noisy DFA competition [11] (with K equal to 10 percent of
the number of the given training strings). An EA with smart state labeling was
later proposed in [12], and since that time it is, to the best of our knowledge,
the state-of-the-art technique for learning DFA from noisy training data.

In noisy case we cannot use APTA node consistency: we cannot determine
whether an accepting state is merged with a rejecting state because correct
string labels are unknown. Thus we cannot use CG and the max-clique symmetry
breaking.

The idea of our modification is rather simple: for each labeled state of APTA
we define a variable which states whether the label can be flipped. The number
of flips is limited by K. Formally, for each v ∈ V± = V+ ∪V− we define fv which
is true if and only if the label of state v can (but does not have to) be incorrect
(f lipped). Using these variables, we can modify the translation proposed in [13] to
take into account mistakes in string labels. To do this, we change the zi definition
clauses (items 1 and 2 from list in Section 2): because of mistake possibility they
hold in case fv is false. Thus, new zi value definitions are expressed in the
following way: ¬fv ⇒ (xv,i ⇒ zi) for v ∈ V+; ¬fv ⇒ (xv,i ⇒ ¬zi) for v ∈ V−.
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To limit the number of corrections to K we use an auxiliary array of K
integer variables. This array stores the numbers of the APTA states for which
labels can be flipped. Thus, fv is true if and only if the array contains v. To avoid
consideration of isomorphic permutations we enforce the array to be sorted in
the increasing order.

To represent the auxiliary array as a Boolean formula we define variables ri,v
for 1 � i � K and v ∈ V± = {v1, . . . , vW }. ri,v is true if and only if v is stored in
the i-th position of the array. To connect variables fv with ri,v we add so-called
channeling constrains: fv ⇔ (r1,v ∨ . . . ∨ rK,v) for each v ∈ V±.

We have to state that exactly one ri,v is true for each position i in the
auxiliary array. To achieve that we use the order encoding method [22]. We add
auxiliary order variables oi,v for 1 � i � K and v ∈ V± = {v1, . . . , vW }. We
assume that oi,v for v ∈ {v1, . . . , vj} and ¬oi,v for v ∈ {vj+1, . . . , vW } for some j.
This can be expressed by the following constraint: oi,vj+1 ⇒ oi,vj

for 1 � j < W .
Now we define that ri,vj

⇔ oi,vj
∧¬oi,vj+1 . Also we add clauses oi,vj

⇒ oi+1,vj+1

(for 1 � i < K and 1 � j < W ) to store corrections in increasing order.
The proposed constraints in CNF are listed in Table 1; there are O(C|V±| +

K|V±|) clauses. Thus, to modify the translation for the noiseless case to deal with
noise we can replace the zi value definition and inconsistency clauses (items 1,
2 and 9 from list in Section 2) with the ones listed in Table 1.

Table 1. Clauses for noisy DFA identification

Clauses CNF representation Range

¬fv ⇒ (xv,i ⇒ zi) ¬xv,j ∨ zj ∨ fv 1 � j � C; v ∈ V+

¬fv ⇒ (xv,i ⇒ ¬zi) ¬xv,j ∨ ¬zj ∨ fv 1 � j � C; v ∈ V−
fv ⇒ (r1,v ∨ . . . ∨ rK,v) ¬fv ∨ r1,v ∨ . . . ∨ rK,v v ∈ V±
ri,v ⇒ fv ¬ri,v ∨ fv 1 � i � K; v ∈ V±
ri,vj ⇒ oi,vj ¬ri,vj ∨ oi,vj 1 � i � K; 1 � j � W
ri,vj ⇒ ¬oi,vj+1 ¬ri,vj ∨ ¬oi,vj+1 1 � i � K; 1 � j < W
oi,vj ∧ ¬oi,vj+1 ⇒ ri,vj ¬oi,vj ∨ oi,bj+1 ∨ ri,vj 1 � i � K; 1 � j < W
oK,vW ⇒ rK,vW ¬oK,vW ∨ rK,vW

oi,vj+1 ⇒ oi,vj ¬oi,vj+1 ∨ oi,vj 1 � i � K; 1 � j < W
oi,vj ⇒ oi+1,vj+1 ¬oi,vj ∨ oi+1,vj+1 1 � i < K; 1 � j < W

4 Symmetry Breaking Predicates

In this section we propose a way to fix automata state enumeration to avoid con-
sideration of isomorphic DFAs during SAT solving. The main idea of our sym-
metry breaking is to enforce DFA states to be enumerated in breadth-first search
(BFS) order. That idea was also used in function NatOrder in the state-merging
approach described in [20] and the Move To Front reorganization algorithm used
in the genetic algorithm [21].

BFS uses the queue data structure to store intermediate results as it traverses
the graph. First we enqueue the initial DFA state (in this paper state number 1).
While the queue is not empty we deque a state i and enqueue any direct child
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states j that have not yet been discovered (enqueued before). Since our transi-
tions are labeled with symbols from Σ, we enqueue child states in alphabetical
order of symbols l on transitions i

l−→ j. We call DFA BFS-enumerated if its
states are enumerated in dequeuing (equals to enqueuing) order. An example of
a BFS-enumerated DFA with six states shown in Fig. 3a (BFS-tree transitions
that were used to enqueue states are marked bold); BFS enqueues are shown in
Fig. 3b. The DFA shown in Fig. 1 is not BFS-enumerated – BFS first dequeues
state 3 rather than state 2 (we consider 1 a−→ 3 before 1 b−→ 2).

(a) BFS-enumerated DFA
with bolded BFS-tree edges

21 3 4 5 6

b b

c
b

c

(b) BFS queue. Cells correspond to
DFA states, transitions correspond to
enqueues

Fig. 3. An example of BFS-numerated DFA and its BFS queue

We propose constraints that enforce DFA to be BFS-enumerated. We assume
that translation of a given DFA identification problem to SAT deals with Boolean
variables yl,i,j (l ∈ Σ; 1 � i, j � C) to set the DFA transition function: yl,i,j ≡ 1
iff transition with symbol l from state i ends in state j.

The main idea is to determine each state’s parent in the BFS-tree and set
constrains between states’ parents. We store parents in values pj,i (for each
1 � i < j � C). pj,i is true if and only if state i is the parent of j in the
BFS-tree. Each state except the initial one must have a parent with a smaller
number, thus ∧

2�j�C

(pj,1 ∨ pj,2 ∨ . . . ∨ pj,j−1).

Moreover, in BFS-enumeration states’ parents must be ordered. State j must
be enqueued before the next state j + 1, thus the next state’s parent k cannot
be less than current state’s parent i (see Fig. 4):

∧

1�k<i<j<C

(pj,i ⇒ ¬pj+1,k).
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k i j j+1

Fig. 4. Part of the queue illustrating the parent ordering predicates. Transitions show
parent relations. The dotted transition is not allowed due to BFS-enumeration.

We set parents variables pj,i through yl,i,j using auxiliary variables ti,j . In
BFS-enumeration state j was enqueued while processing the state with minimal
number i among states that have a transition to j:

∧

1�i<j�C

(pj,i ⇔ ti,j ∧ ¬ti−1,j ∧ . . . ∧ ¬t1,j),

where ti,j ≡ 1 iff there is a transition between i and j; we define these auxiliary
variables using yl,i,j :

∧

1�i<j�C

(ti,j ⇔ yl1,i,j ∨ . . . ∨ ylL,i,j).

Now to enforce DFA to be BFS-enumerated we have to order children in
alphabetical order of symbols on transitions. We consider two cases: alphabet Σ
consists of two symbols {a, b} and more than two symbols {l1, . . . , lL}. In the
case of two symbols only two states can have the same parent i and they are
forced by ordering constraints to have consecutive numbers j and j + 1. In this
case we force the transition that starts in state i labeled with symbol a to end
in state j instead of j + 1:

∧

1�i<j<C

(pj,i ∧ pj+1,i ⇒ ya,i,j).

In the second case we have to introduce a third type of variables in our
symmetry breaking predicates. We store the alphabetically minimal symbol on
transitions between states: ml,i,j is true if and only if there is a transition i

l−→ j
and there is no such transition with an alphabetically smaller symbol. We con-
nect these variables with DFA transitions by adding the following channeling
predicates:

∧

1�i<j�C

∧

1�n�L

(mln,i,j ⇔ yln,i,j ∧ ¬yln−1,i,j ∧ . . . ∧ ¬yl1,i,j).

Now it remains to arrange consecutive states j and j+1 with the same parent
i in the alphabetically order of minimal symbols on transitions between them
and i (see Fig. 5):

∧

1�i<j<C

∧

1�k<n�L

(pj,i ∧ pj+1,i ∧ mln,i,j ⇒ ¬mlk,i,j+1).
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i j j+1

l�

l�

Fig. 5. Illustration of alphabetical ordering predicates. If i is the parent of j and j +1,
ln (lk) is the alphabetically minimal symbol on transitions between i and j (i and j+1)
then lk cannot be alphabetically smaller than ln

Thus we propose symmetry breaking predicates that are composed by listed
constraints. Predicates (for three or more symbols case) translated into O(C3 +
C2L2) CNF clauses are listed in Table 2. Our implementation of proposed pred-
icates and all algorithms can be found on the our labaratory github repository
(https://github.com/ctlab/DFA-Inductor).

Table 2. BFS-based symmetry breaking clauses

Clauses CNF representation Range

ti,j ⇒ (yl1,i,j ∨ . . . ∨ ylL,i,j) ¬ti,j ∨ yl1,i,j ∨ . . . ∨ ylL,i,j 1 � i < j � C
yi,j,l ⇒ ti,j ¬yl,i,j ∨ ti,j 1 � i < j � C; l ∈ Σ

ml,i,j ⇒ yl,i,j ¬ml,i,j ∨ yl,i,j 1 � i < j � C; l ∈ Σ
mln,i,j ⇒ ¬ylk,i,j ¬mln,i,j ∨ ¬ylk,i,j 1 � i < j � C; 1 � k < n � L
(yln,i,j ∧ ¬yln−1,i,j ∧ . . .

¬yl1,i,j) ⇒ mln,i,j

¬yln,i,j ∨ yln−1,i,j ∨ . . .
∨yl1,i,j ∨ mln,i,j

1 � i < j � C; 1 � n � L

pj,1 ∨ pj,2 ∨ . . . ∨ pj,j−1 pj,1 ∨ pj,2 ∨ . . . ∨ pj,j−1 2 � j � C
pj,i ⇒ ti,j ¬pj,i ∨ ti,j 1 � i < j � C
pj,i ⇒ ¬tk,j ¬pj,i ∨ ¬tk,j 1 � k < i < j � C
(ti,j ∧ ¬ti−1,j ∧ . . . ∧ ¬t1,j) ⇒ pj,i ¬ti,j ∨ ti−1,j ∨ . . . ∨ t1,j ∨ pj,i 1 � i < j � C

pj,i ⇒ ¬pj+1,k ¬pj,i ∨ ¬pj+1,k 1 � k < i < j < C
(pj,i ∧ pj+1,i ∧ mln,i,j) ⇒ ¬mlk,i,j+1 ¬pj,i ∨ ¬pj+1,i ∨ ¬mln,i,j ∨ ¬mlk,i,j+1 1 � i < j < C; 1 � k < n � L

5 Experiments

All experiments were performed using a machine with an AMD Opteron 6378
2.4 GHz processor running on Ubuntu 14.04. All algorithms were implemented
in Java, the lingeling SAT-solver was used. Our own algorithm was used for
generating problem instances for all experiments based on randomly generated
data sets. This algorithm builds a set of strings with the following parameters:
size of DFA N which has to be generated, alphabet size A, number of strings
S which have to be generated, noise level K (percent of attribution labels of
generated strings which have to be randomly flipped).

In the exact case the max-clique method clearly outperforms BFS-based
strategy.

For noisy DFA identification we used randomly generated instances. First we
considered the case when the target DFA exists and the Boolean formula is satis-
fiable. We used following parameters: N ∈ [5; 10], A = 2, S ∈ {10N, 25N, 50N}.
We compared SAT approach without any symmetry breaking predicates, our

https://github.com/ctlab/DFA-Inductor
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solution using BFS-based symmetry breaking predicates and the current state-
of-the-art EA from [12]. Each experiment was repeated 100 times. The time limit
was set to 1800 seconds. Initial experiments showed that EA clearly outperforms
our method when K > 4%. Therefore we set this parameter to 1%−4%. Results
are listed in Table 3. We left only instances which were solved within the time
limit. These results indicate that the BFS-based strategy finds the solution faster
than the current state-of-the-art EA only when N is small (< 7), noise level is
small (1% − 4%) and the number of strings is also small (< 50N). But BFS-
based strategy finds the solution extremely faster than SAT approach without
symmetry breaking strategy.

Table 3. Mean times of solving noisy DFA identification with count of strings in the
each instance set to 10N , 25N and 50N respectively

N K BFS, sec SAT, sec EA, sec

5 2 0.22 0.38 1.22
5 4 0.59 0.9 1.1
6 2 1.05 2.44 2.94
6 4 3.34 7.82 2.85
7 1 4.34 10.83 21.36
7 3 17.22 143.66 19.16
8 1 17.89 31.58 30.29
8 2 163.92 225.31 19.8

N K BFS, sec SAT, sec EA, sec

5 1 0.54 0.64 2.77
5 2 2.42 4.33 1.80
6 1 6.3 11.95 11.65
6 2 13.3 43.54 4.80
7 1 31.01 114.95 17.24
7 2 286.76 TL 13.11
8 1 239.46 404.32 21.73

N K BFS, sec SAT, sec EA, sec

5 1 4.2 7.59 6.07
5 2 12.87 22.36 3.05
6 1 20.76 52.5 20.39
6 2 107.94 309.22 11.28

The last experiment considered the case when the target DFA does not exist
and the Boolean formula is unsatisfiable. Random dataset was also used here.
We tried to find the target DFA using the following parameters: N ∈ [5; 7],
A = 2, S = 50N , K ∈ [1; 2] percent. The input set of strings was generated from
a (N +1)-sized DFA. It should be noted that the EA from [12] cannot determine
that an automaton consistent with a given set of strings does not exist. On the
other hand, all SAT-based methods are capable of that. Therefore we compared
our implementation of compact SAT encoding without using symmetry break-
ing predicates and the same with BFS-based predicates. Each experiment was
repeated 100 times and the time limit was set to 1800 seconds again. Results
are listed in Table 4. It can be seen from the table that BFS-based strategy
significantly reduces the mean time of determination that an automaton does
not exist.

Table 4. Mean times and percent of passed solutions of solving noisy DFA identification
when the target DFA does not exist

N K BFS, sec WO, sec passed BFS, % passed WO, %

5 1 11.57 257.13 100 100
5 2 46.42 1296.71 100 30
6 1 110.05 TL 100 0
6 2 581.73 TL 100 0
7 1 995.27 TL 89 0
7 2 TL TL 0 0
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6 Conclusions and Future Work

We proposed symmetry breaking predicates which can be added to the Boolean
formula representing various DFA identification problems. By adding the pred-
icates we can reduce SAT search space through enforcing DFA states to be
enumerated in breadth-first search (BFS) order.

We drew our attention to the case of noisy DFA identfication. We proposed a
modification of the noiseless translation-to-SAT [13] for the noisy case. To achieve
compact encoding for that case we used the order encoding method. We showed
that the previously proposed max-clique technique for symmetry breaking is not
applicable in the noisy case while our BFS-based approach is. We showed that the
BFS-based strategy can be applied in the noisy case when an automaton which
is consistent with a given set of strings does not exists. The current state-of-the-
art EA from [12] cannot determine that. In experimental results, we showed that
our approach with BFS-based symmetry breaking predicates clearly outperforms
algorithm without any predicates. Also we showed that our strategy outperform
EA if the number of the target DFA states is small, noise level is small and
number of strings is small either.

We plan to translate noisy DFA identification to Max-SAT in order to limit
the number of corrections without using an auxiliary array of integer variables.
Also we plan to experiment with alternative integer encoding methods. In the
future we would like to solve a problem of finding all solutions (instead of a
single DFA) using our predicates.
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