
Active learning of formal plant models for
cyber-physical systems

Polina Ovsiannikova∗, Daniil Chivilikhin∗, Vladimir Ulyantsev∗,
Andrey Stankevich∗, Ilya Zakirzyanov∗, Valeriy Vyatkin∗†‡, and Anatoly Shalyto∗

∗Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia
Email: polina.ovsyannikova@corp.ifmo.ru, chivdan@rain.ifmo.ru, ulyantsev@rain.ifmo.ru, shalyto@mail.ifmo.ru

†Department of Electrical Engineering and Automation, Aalto University, Finland
Email: vyatkin@ieee.org

‡Department of Computer Science, Computer and Space Engineering, Lulea Tekniska Universitet, Sweden

Abstract—As the world becomes more and more automated,
the degree of cyber-physical systems involvement cannot be
overestimated. A large part of them are safety-critical, thus, it
is especially important to ensure their correctness before start
of operation or reconfiguration. For this purpose the model
checking approach should be used since it allows rigorously
proving system correctness by checking all possible states. To
ensure the compliance of controller-plant properties with system
requirements, the closed-loop verification approach should be
chosen, which requires not only a formal model of the controller,
but also a formal model of the plant. In this paper we propose
an approach for constructing formal models of context-free de-
terministic plants automatically using active learning algorithms.
The case study shows its successful application to plant model
generation for the elevator cyber-physical system.

I. INTRODUCTION

Even if cyber-physical system (CPS) functionality does
not include immediate interaction with humans, it still can
influence them indirectly. Therefore, among other reasons,
correct behavior of CPS is required to protect lives. The
compliance of system implementation with its specification
is commonly checked with simulation and testing. However,
even automated testing is limited to checking only a limited
number of behaviors defined in test cases. Formal verification
using model checking [1] is a more comprehensive approach.
It examines the entire state space of the system for errors, so
that deviations that are inconspicuous during testing can be
detected. In a number of works it was argued that in CPS
applications closed-loop model checking [2], [3] is preferable
to the open-loop approach, which is commonly used for
computer programs verification.

In the closed-loop approach, a necessary part of the process
is constructing a formal model of the plant. In most cases
formal modeling is performed manually which may be very
resource consuming. In order to reduce the influence of the
human factor and keep the formal model consistent and up-to-
date, approaches for automated plant model generation using
behavior examples, or traces, were developed.

Approaches to formal model inference can be classified by
the ability to interact with the modeled object (simulation
model) during the construction process. Passive learning ap-
proaches build models from data collected before the learning

process [4]–[6]. Thus, together with the model inference
method, a way of gathering traces should be developed,
that provides thorough coverage of system states. Without
knowledge about coverage, measuring the similarity between
the resulting formal model and the real system is complicated,
although research has been done in this area [7]. The second
approach to model inference is active learning [8] that can
be introduced by the well-known L* algorithm [9] and its
modifications, e.g. [10], [11]. The essence of active learning
algorithms is constant communication of the algorithm with
the simulation model during the inference process. This allows
refining the model on every iteration and querying the system
with the exact requests needed to determine its behavior.

In this paper we introduce the active learning approach for
automatic formal models generation of deterministic discrete
context-free plants in a black-box scenario. We also show why
the most popular active learning algorithm L* and similar
ones are not quite helpful when it comes to CPS plant models
inferring.

II. RELATED WORK: ACTIVE LEARNING

The most widely known active learning algorithm L* [9] can
be used to infer a Deterministic Finite Automaton (DFA) that
accepts the same language as the source DFA. This approach
is based on the Nerode congruence theorem [12], which states
that two words u and u′ belonging to the same language are
equivalent, if and only if there are no distinguishing suffixes
for them. Suffix v is distinguishing if, when concatenated with
word u and u′, it makes either uv or u′v belong to language
L, but not both.

The essence of the L* algorithm is iterative hypothesis
automaton refinement based on counterexamples that are re-
ceived after comparing the source automaton with the hypoth-
esis one. Consequently, the algorithm consists of the following
steps: (1) hypothesis automaton construction, (2) checking
whether the hypothesis automaton is equivalent to the source
automaton, (3) processing a counterexample if it exists. Having
the source DFA A and hypothesis DFA H, let us describe each
step in more detail.

During the first step, a hypothesis automaton H is built
according to the Observation Table (OT) that contains informa-

978-1-5386-4829-2/18/$31.00 ©2018 IEEE 719

L ¬R ¬F ¬L R ¬F

¬L ¬R F

Ext ¬Retr

Retr Ext

Retr ¬Ext

Σ

Fig. 1. Moving cylinder plant model

tion about acceptance of particular words by A. This knowl-
edge is collected by sending Membership Queries (MQ) –
requests to A that contain a sequence to check, on which A

responds with True if the sequence belongs to the language
or False in the opposite case. To proceed to hypothesis
inference, closedness and consistency OT properties should
be satisfied.

On the second step of the algorithm, H is compared to
A by means of an Equivalence Query (EQ). In the original
description of L*, this step is not detailed as the existence of
an oracle is assumed: if H is found to be equivalent to A, the
oracle reports “YES”; otherwise, it returns a counterexample
word that is accepted by A, but not by H, or vice versa.

On the last step, a counterexample, if it exists, is processed.
All its prefixes are added to the rows of the OT, and then the
OT is filled with the results of new MQs and the the first step
is repeated. If the oracle reports YES, then H is the resulting
DFA, and the algorithm terminates.

In this work the L* algorithm was implemented and tested
on the example of inferring a formal model of the plant for a
moving cylinder (Fig. 1). The system has two Boolean input
variables: Ext (Extend) and Retr (Retract), and three Boolean
output variables: L (Left), R (Right) and F (Failure). Thus, in
terms of the L* algorithm, there are 22 input symbols (all
combinations of input variable values) and 23 output symbols.
The plant is conveniently represented as a Moore machine.
Hence, L* was adapted to learn deterministic Moore machines
as follows: the cells of OT now store the output symbols
generated by the source system in response to MQs instead of
labels indicating existence of specific sequences in the source
language.

Since the plant is considered as a black box and no oracle is
provided, the EQ was implemented in the following way: the
system was queried with random sequences that were not equal
to the checked ones during OT construction, with their sizes
up to the double number of states of the hypothesis automaton.

The constructed model was converted to the input format
of the symbolic model checker NuSMV [13]. Once the model
was constructed, system specification expressed with Linear
Temporal Logic (LTL) properties was checked using NuSMV.
The results of model checking are shown in Table I: the model
of the system satisfies all considered LTL constraints.

However, since in a black box scenario an oracle is not
available and EQ can only be approximated by heuristics,
it is impossible to claim that the constructed formal model
is equivalent to the source model. Also note that L* was

developed for learning regular languages or context-dependent
systems – behavior of such systems depends not only on
the current input and output variables, but on the history
of interaction, or the context. The absence of context and
internal variables in a system means that regardless of the
input sequence that has led the system to some particular state,
future states will be determined by input symbols only.

Therefore, L* can be applied for learning models of plants
with context, though facing the mentioned issue with EQ. Fur-
thermore, additional difficulties are introduced by processing
continuous variables – this would require serious modifications
of L* while the result would still be inexact due to the heuristic
nature of EQ.

However, it can be argued that in a CPS the plant should be
independent of the context. Indeed, many systems comply with
this assumption. Therefore, the method of inferring context-
free systems was developed that does not require an oracle or
EQ and where reliability of the resulting model is determined
not via automata comparison but by the algorithm termination
condition.

III. PROPOSED APPROACH

Consider a context-free deterministic discrete system with
no internal variables nor explicit time dependence. The com-
bination of all input variable values passed to the system
in a request is called an Input Symbol and is denoted as
a tuple (v(I1), v(I2), . . . , v(In)), where v(I1), . . . , v(In) are
input variable values. Similarly, the combination of all output
variable values produced by the system as a response to
a request is an Output Symbol: (v(O1), v(O2), . . . , v(On)),
where v(O1), . . . , v(On) are output variable values. Note that
since we consider only deterministic context-free plants, the
output symbol is regarded as a system state since it contains
values of all output variables.

Every variable in the model should be discrete. If the
system has continuous variables, they can be discretized by
splitting their allowed range into a number of contiguous
intervals. For example, the real output variable O ∈ [0; 15] can
be discretized as follows: O′ ∈ {[0; 5), [5; 10), [10; 15]}. Then,
each continuous value of a variable can be replaced with the
index of the interval it belongs to. Since discretization is case-
dependent, it is assumed to be provided by the user.

Now note the two following observations. First, the maxi-
mum number of states of the resulting automaton is bounded
from above by the number of unique output symbols. Second,
if the system is in some state and all transitions from this state
have been checked with MQs, there is no need to check them
again. With these observations in mind, the plant model can
be inferred using an active algorithm that resembles classical
breadth-first search (BFS), which produces automata of the
form shown in Fig. 2.

The core idea of the algorithm is to explore every transition
labeled by every input symbol reachable from the chosen
initial state. During the learning process only newly discovered
states are added to the queue of next states to make transitions
from, hence, if a state already exists in the model, it is not

720

TABLE I
TEMPORAL PROPERTIES FOR THE CYLINDER PLANT MODEL

Name Temporal property Comment Correct
value

Obtained
value

ϕ1 G(F→ GF(R = 0 ∧ L = 0)) If the system experiences failure, it stops working forever + +

ϕ2 G(L ∧ R ∧ ¬Ext→ X(L))
When the cylinder is on the left side and the command is to retract,

it will stay on the left − −

ϕ3 GF(R ∧ L) Infinitely often the cylinder will appear in both sides simultaneously − −

ϕ4 G(R ∧ Ext→ X(F))
When the cylinder is on the right side and the command is to

extend, the failure signal will be produced + +

ϕ5 G(R ∧ ¬Ext ∧ ¬Retr→ X(R))
If the cylinder is on the right side and there are no commands to

move anywhere, it does not move (the same for the left side) + +

ϕ6 G(L ∧ Ext ∧ ¬Retr→ X(R))
If the cylinder is on the left side and the command is to extend, it

will appear on the right + +

q0

q1 ql

qm qk

I0 In

I0 In

...
... I0..In

I0..In

I0..In

Fig. 2. The example form of the automaton that can be inferred using the
proposed approach, where ql, qm, and qk are distinct and unknown in advance
states

processed again. The algorithm terminates when the queue is
empty and there are no new states to process.

The simple algorithm described above is sufficient in the
rare case when the plant only uses Boolean variables. In
practice, the plant almost always has continuous dynamics and
is described with real variables, which makes formal modeling
more complicated. Discretization of each real variable into a
set of contiguous intervals makes the model discrete, however,
as seen on the following example, the above algorithm will not
produce a correct model.

Consider a system with one Boolean input variable I1
and one real output variable discretized with intervals
O′1 ∈ {[0; 5), [5; 15)}. The constructed model automaton will
have two states, one for each value of O1 intervals. In the initial
state O1 ∈ [0; 5); after a transition triggered by I1 = True, the
value of O1 is increased by 1. Following the logic described
above, two transitions will be checked, one for I1 = True

and one for I1 = False. Both queries will result in self-
loops in the model, no new states will be generated, and the
algorithm will terminate leaving the state in which O1 ∈ [5; 15)
undiscovered. Still, taking a closer look at the value of O1
after the first transition may indicate that the variable value is
moving towards the next interval and the query simply needs
to be repeated several times to reach it. The situation when
after some transition a continuous variable changes its value

re
al

 v
ar

ia
b

le
 v

al
u

e

iteration number

O1

O2

Fig. 3. Real variable O1 value monotonically increases, correlation coeffi-
cient > 0.5, whereas O2 value fluctuates, correlation coefficient < 0.5

O1 = I1
O1 = I1

O2 = O2 + 1I2 O2 < 15

 ¬I2 O2 = 15

Fig. 4. Example system model with Boolean inputs I1 and I2, Boolean output
O1 and continuous output O2

but stays inside the current discretization interval will be called
movement inside an interval, which means that the continuous
variable value changes monotonically.

To detect “movement inside an interval” behavior the same
MQ is sent to the system C times and the results are saved. Af-
ter C repetitions, the Pearson correlation coefficient between
the number of iterations and variable value is calculated. If
the correlation coefficient is greater than 0.5, we can conclude
that the value is changing almost monotonically – in this case
we keep querying the system with the same MQ until the
variable takes a value from the next interval. If the correlation
coefficient is less than 0.5, then there is no change in the
system and there is no sense in repeating a particular MQ (see
Fig. 3).

However, in the situation when there are several discrete
and discretized output variables in the system, even using
additional logic for self-loops processing, the resulting model
can be wrong – unnecessary cycles can be formed in the
resulting model which will cause problems during verification.
This problem is illustrated on an example system (Fig. 4)
with two Boolean input variables I1 and I2 and two output

721

q2

 O1

q3

¬O1

I1 I2

 ¬I1 I2

O2 [5;10]

q0

 O1

q1

¬O1

I1 I2

 ¬I1 I2

O2 [0;5)

¬I1 I2 I1 I2I1 I2 ¬I1 I2

¬I1 I2 I1 I2

I1 I2¬I1 I2

(a) A part of the model that contains cycles (marked bold red) in the first
and in second intervals of variable O2

q2

 O1

q3

¬O1

I1 I2 ¬I1 I2

O2 [5;10)

q0

 O1

I1 I2

O2 [0;5)

¬I1 I2

¬I1 I2 I1 I2

(b) A part of the model where cycles from the first and second intervals
of O2 are removed

Fig. 5. Parts of the model before and after removing cycles

variables: Boolean variable O1 and real variable O2 ∈ [0; 15]
with discretization O′2 ∈ {[0; 5), [5; 10), [10; 15]}.

A part of the resulting automaton is shown in Fig. 5a. Here
only transitions with I2 = True are shown to make the graph
easier to read. Having such a model, false negative verification
results are possible due to the cycle between q0 and q1. For
example, the property “when O2 is in the first interval and
I2 is always true, the system will eventually move to the state
where O2 is in the second interval” is false, while it is satisfied
for the original system in Fig. 4.

To resolve this issue, the previous mechanism of detect-
ing “movement inside intervals” situations was enhanced as
follows. If during processing of a transition from qn to qk
induced by some request (MQ) R a “movement inside an
interval” situation is detected for some variable, state qk is
saved as a temporary state. Then, firstly, it is necessary to
check whether the transition induced by request R from state
qk is a self-loop as it is described above. If so, then no other
requests are queried from qk and request R is repeated until
the continuous variable reaches its next interval. Then qk is
registered as a new state. Otherwise, state qk is marked as a
state in which continuous variables will be compared by their
concrete values, not by discrete intervals. If a state is marked
this way, all states that will be generated after any transition
from it will be marked as well if they stay in the same intervals
of continuous variables.

Using the described strategy, the part of the model given
in Fig. 5a can be redrawn as shown in Fig. 5b. The full
pseudocode of the proposed plant model construction algo-
rithm is given in Algorithm 1, where the aforementioned
comparison of concrete continuous variable values is im-
plemented via enableConcreteComparison(state)
function (see line 32). After its execution it becomes impossi-
ble to limit the final number of states of the model from above.
Also it is worth mentioning that if there are no discretized

Fig. 6. Interface of the elevator model [7]

variables in the system, the loop starting at line 17 of the
algorithm can be omitted.

IV. EVALUATION ON A CASE STUDY

The proposed approach was implemented in Java and is
available as an open-source tool [14]. The approach was tested
on the example of a three-floor elevator simulation model
developed in NxtStudio [15] with user interface shown in
Fig. 6. This model is almost identical to the one considered
in [7] with a difference in buttons logic, which was moved to
the controller. The aim of the experiments was to generate
the plant model with the proposed method and compare
verification results with [7].

The plant has the following Boolean variables:
• input: moveUp/moveDown – move the car up or down;

722

Algorithm 1: Proposed plant model synthesis algorithm
Data: set I of input variables, set O of output variables
Result: set of transitions T

1 Qproc ← ∅;
2 Qnext ← sendMQ(∅);
3 T ← ∅;
4 I ←

∏
Ii;

5 O ←
∏

Oi;
6 while Qnext 6= ∅ do
7 T ← ∅;
8 for q ∈ Qnext do
9 for input ∈ I do

10 (qs, qe, s)← sendMQ(q, input);
11 T ← T ∪ {(qs, qe, s)};
12 end
13 end
14 TinInterval ← ∅;
15 for (qs, qe, s) ∈ T do
16 if movingInsideInterval(qs, qe) then
17 TinInterval ← TinInterval ∪ {(qs, qe, s)};
18 end
19 end
20 for (qs, qe, s) ∈ TinInterval do
21 q′e ← sendMQ(qe, s).end;
22 c← correlation(qs, qe, s);
23 if q′e = qe ∧ c > 0.5 then
24 while q′e = qe do
25 qe ← q′e;
26 q′e ← sendMQ(qe, s).end;
27 end
28 qe ← q′e;
29 else if q′e = qe ∧ c < 0.5 then
30 qe ← q′e;
31 else
32 enableConcreteComparison(qe);
33 end
34 end
35 T ← T ∪ T ;
36 Qproc ← Qproc ∪ {qs | (qs, qe, s) ∈ T};
37 Qnext ← {qe | (qs, qe, s) ∈ T, qe /∈ Qproc};
38 end
39 return T

• input: openDoors0..2 – open the doors at the respective
floor;

• output: carAtFloor0..2 – elevator car is at the respective
floor;

• output: doorClosed0..2 – the doors at the respective
floor are completely closed.

Also there is a Real output variable carPos ∈ [30; 419.5)
discretized with intervals: [30; 30.5), [30.5; 224.5),
[224.5; 225.5), [225.5; 418.5), [418.5; 419.5). The carPos

output variable represents the concrete position of the car, its
initial value is 30 (interval [30; 30.5)) that corresponds to

the second floor. After each moveDown/moveUp command the
position value increases/decreases by 1, respectively.

Plant model inputs correspond to controller outputs,
controller inputs include all plant model outputs ex-
cept carPos, and also include additional Boolean inputs
buttonPressed0..2 – whether the “request elevator” button
is pressed at the respective floor. After the car reaches the
floor where the button is pressed, the buttonPressedN value
is set to False. To test the proposed algorithm, a special
functionality of setting the plant to an arbitrarily chosen state
was added to the simulation model.

The proposed algorithm generated the plant model in the
form of an automaton with 40 states, which required a total
of 135 seconds. Most of this time was spent on processing
self-loops and cycles. The generated model was exported in
the NuSMV format and composed with the manually prepared
controller model to perform closed-loop verification. LTL
properties that were verified are the same as the ones checked
in [7] and are listed in Table II. All verification results are
correct and no additional changes were applied to the resulting
formal model.

V. DISCUSSION AND CONCLUSION

Active learning approaches to plant model generation are
quite perspective since their core idea is to refine the hypoth-
esis model on every iteration and gather only those behavior
examples that are required to build a consistent model. In this
work a method for generating formal context-free deterministic
plant models in a black-box scenario was introduced. It does
not require an oracle or equivalence checks between source
and hypothesis automata and generates reliable models.

On the other hand, note that model construction starts
in some initial state, which means that the algorithm only
discovers states reachable from the initial one. Thus, if it is
guaranteed that the entire model state space is reachable from
the chosen initial state, then the generated formal model for
context-free deterministic plant will be reliable. Otherwise,
there is a risk to discover only a sub-automaton or, in case
of a disconnected state space, to fail to detect some of its
parts. Meanwhile, the solution is quite straightforward if the
set of possible initial states is known in advance – running
the algorithm from each initial state and merging resulting
automata will solve the issue. However, if the plant simulation
model can be initialized in every possible state, all such states
should be explored.

Also it should be noted that the suggested approach relies in
its efficiency on the possibility to quickly reset the simulation
model to the required state. If for some system this is impossi-
ble, at least a reset to the initial state must be available: in this
case the method will still work, but each reset will take some
time, depending on the simulation model implementation.

Another thing to mention is the time complexity of the
algorithm. Since the proposed algorithm resembles BFS, all
transitions must be executed for all input symbols from every
new state, and the number of transitions will grow exponen-
tially with the number of plant input variables. But, in fact,

723

TABLE II
ELEVATOR SYSTEM TEMPORAL PROPERTIES VERIFICATION RESULTS

Temporal property Comment Correct
value

Obtained
value

Plant temporal properties

ϕ1
G(carAtFloor1 ∧ G ¬motorUp ∧ G(motorDown ∨

carAtFloor0)→ G ¬carAtFloor2)

If the car is on the first floor and
never moves up and always moves
down or stays on floor 0, it will

never reach floor 2

+ +

ϕ2
G(G ¬motorUp ∧ G(motorDown ∨ carAtFloor0)→

F carAtFloor0)
With similar conditions the car

will reach floor 0 + +

ϕ3
G(G¬motorDown ∧ G(motorUp ∨ carAtFloor2)→

F carAtFloor2)
Analogously, if we the car moves

up, it will reach floor 2 + +

ϕ4 GF ¬motorDown Controller cannot always send the
“Down” command − −

ϕ5
G(carAtFloor1 ∧ G ¬motorUp ∧ G motorDown→

F carAtFloor2)

Similar to condition 1, but
G motorDown is used instead of
G(motorDown ∨ carAtFloor0)

− −

ϕ7
G(carPos = 4 ∧ motorDown ∧ ¬motorUp→

X carPos = 3)

If the car is on floor 2 and moves
down, it will be between floors 1

and 2
+ +

ϕ9
G(carPos = 2 ∧ ¬motorDown ∧ motorUp

→ X carPos = 3)
Similarly, floor 1, motorUp + +

Closed-loop model checking

ϕ11 ∀k ∈ [0..2] G(buttonPressedk → F carAtFloork)
If the car is called, it will arrive

to the specified floor − −

ϕ12
G(buttonPressed2 ∧ (not always at some floor)

→ F carAtFloor2)

If the car is called to floor 2 and
is not stuck at some floor it will

arrive to floor 2
+ +

ϕ14
G(buttonPressed0 ∧ (not always at some floor)

→ F carAtFloor0)
The same for floor 0. Because of
controller choice the result differs − −

ϕ15
G(carPos ∈ {1, 3} → doorClosed0 ∧ doorClosed1

∧ doorClosed2)
When the car is between floors,

all doors are closed + +

not every transition ends in a new state. Commonly, some rule
exists in input variable changes, therefore, detection of such
rules makes it possible not to check all input symbols. Hence,
future work will tackle reduction of the number of transitions
to be checked during model construction. Another direction of
future work is automating discretization intervals construction,
which could be done on the basis of inferred model properties
analysis and temporal properties verification results.

ACKNOWLEDGEMENTS

This work was supported by the Ministry of Edu-
cation and Science of the Russian Federation, project
RFMEFI58716X0032.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT press,
1999.

[2] S. Preusse, Technologies for Engineering Manufacturing Systems Con-
trol in Closed Loop. Logos Verlag Berlin GmbH, 2013, vol. 10.

[3] V. Vyatkin, H.-M. Hanisch, C. Pang, and C.-H. Yang, “Closed-loop
modeling in future automation system engineering and validation,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, vol. 39, no. 1, pp. 17–28, 2009.

[4] A. Maier, “Online passive learning of timed automata for cyber-physical
production systems,” in 12th IEEE International Conference on Indus-
trial Informatics, 2014, pp. 60–66.

[5] I. Buzhinsky and V. Vyatkin, “Automatic inference of finite-state plant
models from traces and temporal properties,” IEEE Transactions on
Industrial Informatics, vol. 13, no. 4, pp. 1521–1530, 2017.

[6] G. Giantamidis and S. Tripakis, “Learning moore machines from input-
output traces,” in FM 2016: Formal Methods. Cham: Springer
International Publishing, 2016, pp. 291–309.

[7] D. Avdyukhin, D. Chivilikhin, G. Korneev, V. Ulyantsev, and A. Shalyto,
“Plant trace generation for formal plant model inference: Methods
and case study,” in IEEE 15th International Conference on Industrial
Informatics, 2017, pp. 746–752.

[8] C. de la Higuera, Grammatical Inference. Learning automata and
grammars. Cambridge University Press, 2010.

[9] D. Angluin, “Queries and concept learning,” Machine Learning, vol. 2,
no. 4, pp. 319–342, 1988.

[10] B. Steffen, F. Howar, and M. Merten, “Introduction to automata learning
from a practical perspective,” Formal Methods for Eternal Networked
Software Systems, pp. 256–296, 2011.

[11] R. Rivest and R. Schapire, “Inference of finite automata using homing
sequences,” Information and Computation, vol. 103, pp. 299–347, 1993.

[12] A. Nerode, “Linear automaton transformations,” Proceedings of the
American Mathematical Society, vol. 9, no. 4, pp. 541–544, 1958.

[13] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV Version 2: An
OpenSource Tool for Symbolic Model Checking,” in Proc. International
Conference on Computer-Aided Verification, ser. LNCS, vol. 2404.
Copenhagen, Denmark: Springer, 2002.

[14] Proposed algorithm implementation. [Online]. Available: https://github.
com/ShakeAnApple/active-learning

[15] NxtControl. [Online]. Available: http://www.nxtcontrol.com

724

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

