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Abstract. In this paper we present the results on applying evolutionary
computation techniques to construction of several cryptographic attacks.
In particular, SAT-based guess-and-determine attacks studied in the con-
text of algebraic cryptanalysis. Each of these attacks is built upon some
set of Boolean variables, thus it can be specified by a Boolean vector.
We use two general evolutionary strategies to find an optimal vector:
(1+1)-EA and GA. Based on these strategies parallel algorithms (based
on modern SAT-solvers) for solving the problem of minimization of a spe-
cial pseudo-Boolean function are implemented. This function is a fitness
function used to evaluate the runtime of a guess-and-determine attack.
We compare the efficiency of (1+1)-EA and GA with the algorithm from
the Tabu search class, that was earlier used to solve related problems. Our
GA-based solution showed the best results on a number of test instances,
namely, cryptanalysis problems of several stream ciphers (cryptographic
keystream generators).

Keywords: Algebraic cryptanalysis · Guess-and-determine attack ·
SAT · Evolutionary computation

1 Introduction

Algebraic Cryptanalysis (see [1]) is a way of breaking ciphers through solving
systems of algebraic equations over finite fields. The corresponding attacks are
called algebraic. Systems of algebraic equations constructed for strong ciphers are
usually difficult for all known state-of-the-art algorithms. The resulting system of
equations can be simplified by guessing the values of some of its variables. Then
we can try all possible assignments of such variables, every time obtaining some
simplified system. It might happen that the time spent by some algorithm on

The study was funded by a grant from the Russian Science Foundation (project No.
18-71-00150).

c© Springer Nature Switzerland AG 2019
P. Kaufmann and P. A. Castillo (Eds.): EvoApplications 2019, LNCS 11454, pp. 237–253, 2019.
https://doi.org/10.1007/978-3-030-16692-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16692-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-16692-2_16


238 A. Pavlenko et al.

solving all such systems will be significantly smaller than the brute force attack
time (e.g., if we test all possible keys of the cipher in question). An algebraic
attack that uses some guessed bit set to simplify the system of cryptanalysis
equations is called a guess-and-determine attack.

Over the last 20 years a large number of guess-and-determine attacks have
been designed. In the vast majority of cases, a guess-and-determine attack is
based on the analysis of the cipher features (see Fig. 1 with Trivium-Toy 64
cipher example). Such an analysis usually requires a lot of manual work. The
recent papers [2,3] describe an automatic method for constructing guess-and-
determine attacks. In the framework of this method, the weakened equations
of cryptanalysis are solved using modern Boolean SATisfiability (SAT) solvers.
Each guessed bit set is represented as a point in the Boolean hypercube. An
arbitrary point is associated with the value of a special function that evaluates
the complexity of the corresponding guess-and-determine attack. This function
is a black-box pseudo-Boolean function. Thus, the construction of a guess-and-
determine attack is reduced to the pseudo-Boolean black-box optimization prob-
lem. Various metaheuristic algorithms can be used to solve it and the papers [2,3]
employ the simplest local search schemes, such as Simulated Annealing and Tabu
Search. The main purpose of this paper is to demonstrate capabilities of evolu-
tionary computation in application to the problem of automatic construction of
guess-and-determine attacks in algebraic cryptanalysis. Below is the brief outline
of the present work.

In Sect. 2 we introduce basic notations and facts of the presented paper. In
particular, we briefly describe construction the known reduction of the prob-
lem of cryptographic attacks to the problem of pseudo-Boolean optimization.
The corresponding pseudo-Boolean function Φ is not specified analytically and
to minimize it metaheuristic algorithms related to local search methods were
previously used [2,3]. In the present paper in order to solve this problem we
apply two common strategies: (1+1)-Evolutionary Algorithm and Genetic Algo-
rithm. The corresponding algorithms and techniques are described in Sect. 3.
Section 4 contains results of computational experiments. In Sect. 5 we summa-
rize the obtained results and outline future research.

2 Preliminaries

In this section, we give some auxiliary information from the Boolean functions
theory and cryptanalysis.

2.1 Boolean Functions, Formulas and Boolean Satisfiability
Problem (SAT)

Let {0, 1}k, k ∈ N denote a set of all binary words of length k ({0, 1}0 corre-
sponds to an empty word). The words from {0, 1}k, k ≥ 1 are sometimes called
Boolean vectors of length k, whereas the set {0, 1}k, (k ≥ 1) is referred to as
a Boolean hypercube of dimension k. An arbitrary total function of the form
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Fig. 1. Visualization of the key stream generator Trivium-Toy 64 with three registers.
The guessed bit set, which is considered as an individual of evolutionary algorithms in
the present work, is colored grey

f : {0, 1}k → {0, 1} is called a Boolean function of arity k. An arbitrary function
of the form h : {0, 1}∗ → {0, 1}∗, where

{0, 1}∗ =
∞⋃

k=0

{0, 1}k

is called a discrete function.
Boolean variables are the variables that take values from {0, 1}. A Boolean

formula with respect to k variables is an expression built by special rules over the
alphabet comprising k Boolean variables x1, . . . , xk and special symbols called
Boolean connectives. An arbitrary Boolean formula with respect to k variables
defines a Boolean function of the kind fk : {0, 1}k → {0, 1}. The set of Boolean
connectives is called complete if they can be used to create any Boolean func-
tion of arbitrary arity. Such a set is called a complete system of connectives or
a complete basis. The following set is a complete basis: {∧,∨,¬}, where ∧ is
conjunction, ∨ is disjunction and ¬ is negation.

Assume that F is an arbitrary Boolean formula, X is a set of variables that
can be found in F , B is an arbitrary subset of X (B ⊆ X). By {0, 1}|B| we
denote a set of all assignments of variables from B.

Let x be a Boolean variable. The formula that consists of a single variable
or a negation is called a literal. Let x be an arbitrary Boolean variable. A pair
of literals (x,¬x) is called a complementary pair. An arbitrary disjunction of
different literals, which do not have any complementary pairs among them, is
called a clause. An arbitrary conjunction of different clauses is called a Conjunc-
tive Normal Form (CNF). If C is a CNF and X = {x1, . . . , xn} is a set of all
Boolean variables that can be found in C, then we can say that C is a CNF over
the set of variables X.

Let C be a CNF over X, |X| = k. Denote fC : {0, 1}k → {0, 1} a Boolean
function defined by the CNF C. The CNF C is called satisfiable if there exists
such α ∈ {0, 1}k (i.e. an assignment of variables from X), that fC(α) = 1 holds.
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If such α exists, then α is called the satisfying assignment of C. If such α does not
exist, then C is called unsatisfiable. The Boolean Satisfiability Problem, shortly
denoted as SAT, has the following formulation: for any given CNF C, find if C
is satisfiable. SAT is a classic NP-complete problem [4].

Recently, SAT has been targeted by algorithms that demonstrate a high effi-
ciency for a wide class of applied problems [5]. Application of SAT solvers proved
to be very successful in the following areas: symbolic verification, bioinformatics,
combinatorics and Ramsey’s theory, cryptanalysis.

2.2 Guess-and-Determine Attacks in Algebraic Cryptanalysis

As has been mentioned above, the algebraic cryptanalysis implies solution of
systems of algebraic equations (usually over the field GF (2)) that describe some
cipher.

Any cipher can be considered as a total discrete function of the kind

f : {0, 1}n → {0, 1}m. (1)

Then the cryptanalysis problem can be considered in the context of the problem
of finding a preimage for some known value of the function (1): using the known
γ ∈ Range f , Range f ⊆ {0, 1}m, find such α ∈ {0, 1}n that f(α) = γ. We will
call it the inversion problem for the function (1).

It is well-known (see, e.g. [1]) that the algorithm for calculating function (1)
can be effectively described by a system of algebraic equations over the field
GF (2). Denote this system by E(f). Roughly speaking, it describes the process
of finding an output of the function f that corresponds to an arbitrary input.
Let X be a set of all variables that can be found in E(f). Denote by X in and
Xout sets of variables that were assigned to inputs and outputs of the function
f , respectively.

Substitution of the values into the system E(f) is determined in a standard
way. It can be shown that if we substitute an arbitrary assignment α ∈ {0, 1}n

for some variables from X in into E(f), we can derive assignments for all other
variables from E(f) by the following simple rules.

Substitute an arbitrary γ ∈ Range f into E(f), and let E(f, γ) be the
resulting system. If we manage to solve E(f, γ) then we can extract such α ∈
{0, 1}n from the solution of E(f, γ) that f(α) = γ. However, this is a difficult
problem for strong ciphers.

The simplest and most efficient way of solving E(f, γ) is a sequential substi-
tution of all possible α ∈ {0, 1}n into E(f, γ). We denote the resulting system
as E(f, α, γ). In line with the above, an arbitrary system E(f, α, γ) can be eas-
ily solved. If f(α) �= γ, then by applying the simple rules mentioned above, we
derive a contradiction from E(f, α, γ). If f(α) = γ, the contradiction does not
occur and each variable from X will get a certain value. This scheme of trying
all possible inputs corresponds to the method of cryptanalysis called the brute
force attack.
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For some ciphers and for functions of the form (1) that describe them, we
can select a subset B of the set X with the following properties:

1. |B| 	 n;
2. the problem of finding a solution of E(f, γ, β) or proving its inconsistency can

be solved relatively quickly using some algorithm A; here β is an assignment
for variables from B;

3. the total time required for finding α : f(α) = γ by trying various β ∈ {0, 1}|B|

is considerably smaller than the time of the brute force attack.

If the requirements listed above are fulfilled, then we can talk about a guess-
and-determine attack based on the guessed bit set B.

Over the last 15–20 years a substantial number of different guess-and-
determine attacks have been proposed. Some of them proved to be fatal for the
corresponding ciphers. One of the simplest examples of the guess-and-determine
attack is the attack on the A5/1 cipher described by Ross Andersen in 1994 [6].
For a long time, A5/1 served as a standard for encrypting the GSM traffic in
cellular telephony. This cipher uses a 64-bit secret key. R. Anderson noted that
if we choose in a certain way 53 bits of the internal state of the A5/1 registers
and we know a certain number of bits of the key flow, then we can recover 11
unknown bits of the state of the registers by solving a trivial linear system over
the field GF (2) (in fact, we just have to solve a triangular system). Therefore,
the Anderson attack is based on the guessed bit set B : |B| = 53, the role of the
A algorithm is played by the algorithm for solving systems of linear equations.
The form of these equations enables implementation of this attack on specialized
computational architectures, for instance, in [7] the Anderson attack was per-
formed on an FPGA device. The runtime of the corresponding attacks is up to
10 h for one cryptanalysis problem.

A series of works on algebraic cryptanalysis (see e.g., [1,8–10]) implies that
algorithm A does not have to be polynomial. The problem of solving systems
of the form E(f, γ) can be efficiently reduced to combinatorial problems that
are difficult in the worst case (NP-hard), but not difficult for most of their
particular cases. One of the most computationally attractive problems here is
SAT. Accordingly, any SAT-solving algorithm can play the role of A. In all the
articles listed above, as well as in a number of other papers, the problem of
finding a solution to an arbitrary system of the form E(f, γ) was reduced to
SAT for CNF C(f, γ). To solve the resulting SAT instances, CDCL-based SAT
solvers were used [11].

Some of those works describe guess-and-determine attacks where weakened
cryptanalysis equations are solved using SAT-solvers. In [8] SAT-solvers were
used to build a guess-and-determine attack on the truncated variants of the DES
cipher, in [9] similar attacks targeted truncated variants of the GOST 28147-89
cipher. The paper [10] described a SAT-based guess-and-determine attack on the
A5/1 cipher that used the guessed bit set B : |B| = 31.
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2.3 Automatic Methods for Constructing Guess-and-Determine
Attacks

In all of the above attacks, the guessed bit set was selected while analyzing
the characteristics of the cipher in question. In other words, the corresponding
attacks were constructed manually. As mentioned above, papers [2,3] propose
approaches to the automatic construction of guess-and-determine attacks. To
this end, special functions were introduced: they evaluate the efficiency of the
attack and are calculated using a probabilistic experiment. Such functions are
black-box pseudo-Boolean functions [12]. In [2,3] the problem of constructing
a guess-and-determine attack with the lowest time was reduced to the pseudo-
Boolean black-box optimization problem. Next, we briefly describe the corre-
sponding techniques presented in [3].

Consider the problem of finding the preimage for the function f : {0, 1}n →
{0, 1}m, given by some efficient algorithm. Following the ideology of symbolic
execution [4,13], we can build the CNF C(f) that possesses some important
properties using the algorithm that computes f (for more details see [3]). Let
γ ∈ {0, 1}m be an output of the function f and let B be an arbitrary set of
variables in C(f) that does not include variables from Xout. Consider B as a
guessed bit set and denote by β an arbitrary assignment for variables from B.
Let C(f, γ, β) denote the CNF resulting from the substitution of the assignments
γ and β into C(f).

Let A be some algorithm for solving SAT. Fix some positive number t. For
each β ∈ {0, 1}|B| build a CNF C(f, γ, β) and apply the algorithm A to it,
limiting the algorithm runtime to t. If A fails to solve the corresponding SAT
instance in time t, then we terminate A and move to the next β. If for some
β ∈ {0, 1}|B| the algorithm A finds a satisfying assignment for C(f, γ, β) in time
≤ t, then thereby it will find α ∈ {0, 1}n : f(α) = γ.

It was shown in [3] that if α was randomly chosen in correspondence with a
given on {0, 1}n uniform distribution and if γ : γ = f(α) is known, then we can
determine the probability of the following event: by applying the brute force strat-
egy described above to the set {0, 1}|B| we will find α : f(α) = γ. Denote this
probability by ρB . It might be very small. Then we can repeat the strategy consid-
ering different outputs γ1, . . . , γr of the function f (for many ciphers, it is enough
to solve this problem at least for one such output to find the secret key). Then the
probability of finding the preimage for at least one output γ1, . . . , γr is

P ∗
B = 1 − (1 − ρB)r.

It is obvious that for a fixed ρB > 0 the probability P ∗
B tends to 1 as r increases.

Note that the strategy described above takes time 2s · t, (s = |B|) to process
one output γi, i ∈ {1, . . . , r}, therefore, the upper bound for the total runtime
of the corresponding attack is 2s · t · r. It was shown in [3] that if r ≈ 3

ρB
,
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then P ∗
B > 0.95, which means that the inversion of at least one of the r outputs

of the function under consideration is an almost certain event. For this reason,
it is desirable to find such B, for which the value

2s · t · 3
ρB

reaches the minimum on a set of possible alternatives of guessed bit sets. Unfor-
tunately, if we want to calculate precisely the probability ρB , we have to search
through the entire set {0, 1}n, which is infeasible. Therefore, the probability ρB

takes the form of the expected value E[ξB ] of the random variable ξB of a special
kind. Thus, it is required to minimize the function

2s · t · 3
E[ξB ]

(2)

over all possible sets B. The variable ξB is derived from simple probability experi-
ments (see details in [3]), whereas we use the Monte Carlo method [14] to evaluate
E[ξB ].

The paper [3] considers the problem of constructing an efficient SAT-based
guess-and-determine attack in the context of the minimization problem of a
black-box pseudo-Boolean function with the vector χB as the function’s input.
The unit components of χB select the set B in the set of variables found in
C(f). Then a probability experiment for calculating the function (2) is set up
for this set B. The obtained number is an estimate of the time for the guess-
and-determine attack, where B is used as a guessed bit set. The goal is to find
B with the smallest value of the estimate for the function (2).

In [2,3], pseudo-Boolean optimization problems were solved by simple meta-
heuristics such as Simulated Annealing and Tabu Search. The main results of
this paper deal with application of evolutionary algorithms to these problems.

3 Applying Evolutionary Computations to Construction
of Guess-and-Determine Attacks

In this section we formulate the problem of constructing an efficient guess-and-
determine attack as the pseudo-Boolean optimization problem. We also describe
the basic techniques of evolutionary computing that we employ.

3.1 Construction of an Efficient Guess-and-Determine Attack as
the Problem of Pseudo-Boolean Function Minimization

We consider the cryptanalysis problem as the problem of inversion of the func-
tion (1). Construct the CNF C(f). Let X be a set of variables found in C(f).
Let W = X \ Xout and let B be an arbitrary subset of W . We can present an
arbitrary B with the help of the Boolean vector χB of length q = |W |. Ones in
χB will indicate those variables from W that were included into B.
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Following the ideas from [3], define the pseudo-Boolean function

Φ : {0, 1}q → R. (3)

The arbitrary vector χB ∈ {0, 1}q is an input of the function (3). We use this
vector to build the set B, B ⊆ W .

Recall that X in, |X in| = n is the set formed by the variables from X cor-
responding to the input of the function (1). Define uniform distribution on
{0, 1}n and choose the corresponding Boolean vectors α1, . . . , αM (αj ∈ {0, 1}n,
j ∈ {1, . . . , M}). We will refer to this set of vectors as a random sample of size M .
In view of the above, substitution of an arbitrary αj into C(f) and application
of simple rules yields a derivation of assignments for all variables from X. Let γj

be an assignment for variables from Xout obtained as a result of this derivation.
By βj we denote the assignment derived for variables from B, j ∈ {1, . . . , M}.

Let us construct the CNFs C(f, β1, γ1), . . . , C(f, βM , γM ). Let each of these
CNFs be an input of the SAT-solver A and set the solving time of each corre-
sponding SAT instance as t. For each j ∈ {1, . . . , M} consider a random variable
ξj
B , that evaluates to 1 if SAT instance for the CNF C(f, βj , γj) was solved in

time ≤ t, and ξj
B = 0 otherwise. The value of the function (3) at arbitrary point

χB ∈ {0, 1}s is defined as follows:

Φ(χB) = 2|B| · t · 3M
∑M

j=1 ξj
B

, (4)

where t and M are the parameters of this function.
In accordance with the Monte Carlo method, the bigger the size of the random

sample M , the better approximation of (2) is given by the function (4).
Now consider the problem of finding the minimum of the function (4) over

the Boolean hypercube {0, 1}q. To solve this problem we will use evolutionary
algorithms.

3.2 Evolutionary Computation Techniques Used for Minimization
of the Suggested Pseudo-Boolean Function

In this section we present some techniques that complement such strategies as the
(1+1)-Evolutionary Algorithm [15] ((1+1)-EA) and one variant of the Genetic
Algorithm (GA). We used these techniques to solve the minimization problem
for functions of type (4) for several stream ciphers.

Basic Schemes of Evolutionary Computation. Algorithm 1, which is given
below, is a common outline of an evolutionary algorithm for solving the mini-
mization problem of an arbitrary function of type (4).

As an input, the algorithm takes the CNF C(f), a random sample size M ,
the time limit t, the minimization strategy S, and the initial guessed bit set
represented by the Boolean vector χstart.
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Algorithm 1. Evolutionary algorithm
Input: CNF formula C(f), initial sample size M , time limit t, strategy S, initial

guessed bits χstart

1: P ← InitPopulation(S, χstart)
2:

〈
χbest, vbest

〉 ← 〈
χstart, Φ(χstart, M, t)

〉

3: Nstag ← 0 � stagnation count
4: while not StopCondition( ) do
5: Nstag ← Nstag + 1
6: for χ in P do
7: v ← Φ(χ, M, t)
8: if v < vbest then
9:

〈
χbest, vbest

〉 ← 〈
χ, v

〉

10: Nstag ← 0
11: end if
12: M ← SelectM()
13: end for
14: if Nstag < Nmax

stag then
15: P ← GetNextPopulation(S, P )
16: else
17: P ← Restart(S, χstart)
18: Nstag ← 0
19: end if
20: end while
21: return

〈
χbest, vbest

〉

Each Boolean vector χ from {0, 1}q is considered as a population in the gen-
eral concept of evolutionary computation. The value of the function Φ of type (4)
at point χ is considered as a value of the fitness function for the corresponding
population.

The function InitPopulation(S, χstart) forms the initial population accord-
ing to the input vector χstart within the frames of the chosen evolutionary strat-
egy S. The pair

〈
χbest, vbest

〉
corresponds to point in {0, 1}q with the current

Best Known Value (BKV) of the function Φ.
The value of Φ at each specific point χB ∈ {0, 1}q is computed using the

scheme described in the previous section: construct the set B defined by χ, con-
struct the random sample {α1, . . . , αM}, find Boolean vectors γ1, . . . , γM and
β1, . . . , βM induced by this random sample, and finally build the SAT instances
C(f, β1, γ1), . . . , C(f, βM , γM ). We use the SAT-solver A to solve all these SAT
instances, each SAT-instance should be solved in time t. If the satisfying assign-
ment is found or the time limit t is exceeded, the corresponding solving pro-
cess is terminated. In the first case we set ξj

B = 1, in the second case ξj
B = 0

(j = 1, . . . , M). Then we compute (4).
In Algorithm 1, the transition to the next population is performed via the

function GetNextPopulation(S, P ). The situation, when the algorithm fails
to improve the current BKV during one iteration of the population change is
called stagnation. If the number of stagnations exceeds some given limit Nmax

stag ,
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then we perform a restart: a new starting population is formed using the function
Restart(S, χstart). The algorithm stops if the given general limit (for example,
12 h of operation of a computing cluster) is exceeded.

Techniques of Improvement. Note that the value of the observed random
variable becomes known only after algorithm A has run for some time (not
greater than t). On the other hand, the greater M is, the more accurate esti-
mate of the time of the guess-and-determine attack is given by the value of
function (4). Accordingly, the computation time required to find the value of
function (4) is critically dependent on the random sample size M . Therefore,
the greater M is, the more computation is required to find the value of (4).
When M > 500 we have to use a computing cluster to minimize (4). As we will
see further from computational experiments, reduction of the random sample
size allows significantly increasing the algorithm’s speed (the speed correlated
with the number of hypercube points in which the objective function value was
calculated during optimization).

Next, we describe a special technique that helps significantly increase the
number of points that the algorithm processes during a fixed time limit (function
SelectM). This technique is based on the dynamic change of the random sample
size. However, before we proceed, we will focus on some important details.

Note that if we consider functions of type (4), we can significantly reduce the
dimension of the search space by taking into account the features of the origi-
nal cryptanalysis problem. It was shown in [2,3] that we can consider {0, 1}n,
n = |X in| as a hypercube over which we perform minimization. In other words,
the set B can be searched for as some subset in the set of all variables of the secret
key. This can explained by the fact that we have already mentioned above: sub-
stitution of arbitrary assignments of all variables from X in into C(f) derives the
assignment for all variables from X\X in. The SAT-solver A performs this deriva-
tion very quickly (essentially, the running time is linearly dependent on |C(f)|,
because in this case A does not have to solve a combinatorial problem). This
happens because X in is a Strong Unit Propagation Backdoor Set (SUPBS) [16].
Therefore, χstart = 1n (the Boolean vector that consists of n ones) can always
be chosen as a starting population of our minimization procedure. This point
corresponds to the situation Bstart = X in. Any subsequent point will define some
subset of X in.

Thus, values of the random variable ξB in point χstart = 1n are computed very
quickly. This property holds for several subsequent points and can be observed
in Fig. 2, where we present the results of two runs of the algorithm described
above.

Since the time spent on solving a single SAT instance in the Random Sample
during the Fast Descent phase is already small, the spectrum of the function (4)
on such random samples contains close values. This means that there is no princi-
pal need to use random samples of big size. The general idea is to change M while
the algorithm runs, depending on the “homogeneity” of the sample in terms of
the values of the observed random variable. After a whole range of experiments,
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Fig. 2. Typical minimization of function (4). The process can be tentatively divided
into two phases: Fast Descent and Meticulous Search.

we chose the following scheme: at the initial stage we use M = 10, then, passing
through special checkpoints, M changes taking values 50, 100, 300, 500, 800. The
decision to change the sample size is made heuristically depending on the portion
of j ∈ {1, . . . , M}, for which ξj

B = 1 at the current value of M . General consider-
ations here are as follows. Suppose that we consider two random samples R1 and
R2 of size M = 1000 and that in 495 cases out of 1000 ξj

B = 1 for the sample R1,
and ξj

B = 1 for the sample R2 in 510 cases out of 1000. The difference between
these two values is ≈3%. Now let M = 100, and again we consider two random
samples R1, R2. Suppose that ξj

B = 1 in 47 cases out of 100 for R1 and ξj
B = 1 in

51 cases out of 100 for R2. Here we have the difference ≈8%. Therefore, if in this
situation we take M = 100, we will loose ≈5% of accuracy, but we will spend
10 times less resources on computing the value of our function. Thus, in the
initial search stage, when BKV often improves at each iteration, minor loss of
accuracy is not an issue. In final iterations, when the algorithm takes too much
time to improve some BKV, the accuracy of E[ξB ] is very important, which is
why it is reasonable to considerably increase the sample size in later stages of
the algorithm for minimization of (4).

When traversing the hypercube we use hash tables to store the passed points.
If the mutation results in a point where the value of the function (4) was calcu-
lated earlier, then, after finding this point in the hash table, recalculation is not
performed.

Finally, here we describe a special variant of the Genetic Algorithm (GA),
which we used for minimization of (4). This algorithm employs the technique
known as elitism. Our algorithm works with populations that consist of N
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individuals. As in the case of (1+1)-EA, the GA starts with the point χstart = 1n

for which it constructs N replicas. Each such replica is an individual. Let us
describe an arbitrary iteration of the algorithm. Let Pcurr = {I1, . . . , IN} and
Pnext, |Pnext| = N be the current and the new populations, respectively. Choose
from Pcurr L individuals with the best values of the function (4) and move them
to Pnext (elitism). Let v1, . . . , vN be the values of (4) for all individuals from
Pcurr and consider the set of numbers U = {u1, . . . , uN}, where uj = 1

vj
. We

associate with any individual Ij ∈ Pcurr a number pj defined as pj = uj∑N
i=1 ui

.
For individuals from Pcurr, consider the set U with the probability distribution
XU = {p1, . . . , pN}. Choose randomly H individuals from Pcurr with respect to
the distribution XU and apply to each of them the standard mutation, flipping
each bit with the probability 1

n . Move the resulting individuals to Pnew. Finally,
choose from Pcurr individuals with respect to the distribution XU and perform
over them one of the known crossover operations. Assume that G individuals
were obtained as the result of crossover and move them to Pnew.

Thus the individuals with smaller value of function (4) are more likely to be
selected for mutation or crossover. Finally, we require the following condition
to be satisfied: L + H + G = N . In our experiments, we used a variant of the
described algorithm with N = 10, L = 2, H = G = 4.

4 Computational Experiments

We applied the algorithms and techniques described in the previous section to
the cryptanalysis problems of keystream generators.

Stream cipher or keystream generator (see e.g. [17]) is a discrete function of
kind (1), such that m � n. This function, taking an arbitrary n-bit word as
input, generates a word of length m that behaves as a random sequence. The
generator’s input is called the secret key, the output is called the keystream. The
practical implication of the keystream generator is very quick generation of a
long keystream for a given random key. Short keys can be exchanged by partic-
ipants via, for example, nonsymmetrical cryptography that provides substantial
guarantees for resistance, but is extremely slow.

Suppose that for a common secret key α the participants A and B simulta-
neously generate the same keystream δ = f(α). If A wants to send B a secret
message x ∈ {0, 1}m, it creates a ciphertext x ⊕ δ (a componentwise addition
modulo 2), which is sent to the public channel. Upon receiving the ciphertext
and knowing δ, B easily finds x. It often happens that a malefactor (or adver-
sary) M knows a fragment of the message x – this can be, for example, some
known proprietary information which is ciphered together with the secret mes-
sage. This very system vulnerability for a long time had been present in the
traffic encryption protocol of cellular telephony (see [18]). In this situation, M
can use a ciphertext to find the fragment δ, denoted as γ, and then try to find
α as an preimage of γ for a mapping f . To do that, M has to solve a system of
algebraic equations that describes construction of γ from α, or he has to solve
a corresponding SAT instance. For a correct definition of α, the length of the
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keystream fragment γ should not be smaller than the length of α (usually it is
slightly larger). Such cryptanalysis of a keystream fragment in order to find a
secret key is called the known plaintext scenario [17].

In view of the above, consider the inversion problem for the function f :
{0, 1}n → {0, 1}k, k ≈ n, where for the known γ ∈ Range f one needs to find
such α ∈ {0, 1}n that f(α) = γ. We analyzed several functions that can be used
as keystream generators:

1. Stream ciphers of the family Trivium (Trivium-Toy 64, Trivium-Toy 96,
Bivium).

2. Alternating Step Generator (ASG).

Below we give a brief description of these ciphers.
The Trivium stream cipher was proposed in [19]. Being one of the eSTREAM

project winners, this cipher attracts a lot of attention from cryptanalysts. In
several papers (see e.g. [20,21]) it was shown that there are guess-and-determine
attacks for Trivium which are more efficient than brute force attacks in the
context of the so-called state recovery problem.

The Bivium cipher is a weakened version of Trivium (it uses only two original
registers out of three). This cipher, as well as Trivium, was described in [19],
where the author states that it is of mainly a research interest. A series of
attacks on Bivium (including the algebraic ones that use SAT) can be found
in [21–25].

Papers [26,27] propose a general approach to the construction of Trivium-
like ciphers with a smaller total size of registers which preserves the algebraic
properties of the original Trivium. Below we follow [26] and refer to this family
as Trivium-Toy. In particular, by Trivium-Toy L we denote a cipher from this
family, in which L is a total size of state that should be recovered. Hereinafter
we consider state recovery attacks on Trivium-Toy 96 (this cipher is described
in [26]) and Trivium-Toy 64.

The Alternating Step Generator (ASG) was suggested in [28] and actually it
is a common design of keystream generators that can be used for construction
of stream ciphers with different lengths of the secret key. The most attractive
property of ASG is ease of implementation and high speed of keystream gener-
ation. ASG was targeted by several attacks, the analysis of which is presented
in [29]. Some of these attacks employ a significant amount of keystream. The
original paper [28] describes an attack that tried all possible ways to fill the
control register. Essentially, this is a guess-and-determine attack which uses the
so-called Linear Consistency Test [30] as an algorithm for solving weakened sys-
tems of cryptanalysis equations. The paper [31] presents a SAT-based guess-and-
determine attack for ASG based on building SAT Partitionings of hard variants
of SAT described in [2].

We implemented the strategies (1+1)-EA and GA presented above and Tabu
Search [32] in the same manner as it is described in [2,3]. The created program
is an MPI application that uses the SAT solver ROKK [33] as a computational
core.
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Each experiment was conducted on 180 cores of a computing cluster equipped
with Intel Xeon E5-2695 processors. The duration of one experiment was 12 h. In
the minimization process of functions of the kind (4) we used a random sample
of size M = 500. For each point taken as a solution we recalculated the value of
the objective function using a sample of size M = 104. The resulting value was
taken as final.

As test problems we considered cryptanalysis problems for keystream gen-
erators from the Trivium and the ASG families. The results of computational
experiments are presented in Table 1. For a specific generator G notation G
n/m means that one needs to find an n-bit secret key by analyzing m bits of
a keystream. SAT instances encoding the corresponding cryptanalysis problems
were constructed using the TRANSALG system [34] which translates algorithms
for calculating discrete functions of the kind (1) into SAT.

Let us note that GA-elitism showed the best results among the considered
strategies for minimization of functions of the kind (4), overtaking competitors
in three test problems out of six.

Table 1. Experimental results for six cryptographic algorithms. The leftmost column
contains the name of a keystream generator for which the cryptanalysis problem is con-
sidered. The remaining table is divided into three sections corresponding to strategies
(1+1)-EA, GA and Tabu Search. The first column of each section contains the power
of the guessed bit set which corresponds to the best guess-and-determine attack found.
The second column contains a time estimation (in seconds) for the attack

(1+1)-EA GA Tabu Search

Power of
guessed
bit set

G&D attack
(seconds)

Power of
guessed
bits set

G&D attack
(seconds)

Power of
guessed
bits set

G&D
attack
(seconds)

Trivium-Toy 64/75 21 3.19e+07 22 5.36e+07 17 4.30e+07

Trivium-Toy 96/100 33 1.28e+13 40 2.09e+12 34 3.14e+12

Bivium 177/200 32 2.60e+12 39 1.49e+12 40 4.29e+12

ASG 72/76 9 5604.8 8 6155.19 8 5601.33

ASG 96/112 13 6.76e+06 16 3.72e+06 14 3.95e+06

ASG 192/200 47 2.27e+18 44 2.84e+17 47 1.14e+16

5 Conclusion and Future Work

In the presented paper we applied evolutionary computation strategies to con-
struct guess-and-determine attacks arising in algebraic cryptanalysis. Each of
these attacks implies solving a family of algebraic equations over a finite field
(usually, GF (2)). Each equation from such family is the result of substitut-
ing the values of some bits into a general equation describing how a considered
cipher works. The substituted bits are called the guessed bits. To solve the equa-
tions we use SAT solvers, similar to a number of other works. It is clear that
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different sets of guessed bits correspond to guess-and-determine attacks with
different runtime. We consider the problem of finding a set of guessed bits that
yields an attack with the lowest runtime as the problem of minimization of a
pseudo-Boolean function. To solve it we used two general strategies employed
in evolutionary computation: (1+1)-EA and GA. The proposed algorithms were
implemented in the form of a parallel MPI program for a computing cluster.
Using these algorithms we constructed guess-and-determine attacks for several
keystream ciphers. The obtained attacks are better than the ones constructed
using the Tabu Search algorithm, but not dramatically better. However, from our
point of view, we have only touched the potential of evolutionary computation
in this area. In the nearest future we plan to significantly extend the spectrum
of employed evolutionary computation techniques in application to problems of
constructing Algebraic cryptanalysis attacks.

Acknowledgements. The authors would like to thank Daniil Chivilikhin, Maxim
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