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Abstract. Inference of deterministic finite automata (DFA) finds a wide
range of important practical applications. In recent years, the use of SAT
and SMT solvers for the minimum size DFA inference problem (MinDFA)
enabled significant performance improvements. Nevertheless, there are
many problems that are simply too difficult to solve to optimality with
existing technologies. One fundamental difficulty of the MinDFA prob-
lem is the size of the search space. Moreover, another fundamental draw-
back of these approaches is the encoding size. This paper develops novel
compact encodings for Symmetry Breaking of SAT-based approaches to
MinDFA. The proposed encodings are shown to perform comparably in
practice with the most efficient, but also significantly larger, symmetry
breaking encodings.

Keywords: DFA inference · Boolean satisfiability ·
Symmetry breaking

1 Introduction

The inference of minimum-size deterministic finite automata (DFA) from (pos-
itive and negative) examples of their behavior has been investigated since the
early days of computing, with continued improvements until the present day.
The importance of topic is illustrated not only by recent improvements to
tools for computing minimum-size DFAs [27,30], but also by recent and ever
growing list of applications [29]. The problem of computing the minimum-size
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DFA (MinDFA) witnessed seminal work in the early 70s [6]. Moreover, a num-
ber of visible contributions were made in the 90s. These include the use of
graph coloring [8], constraint programming techniques [9,22], and state merging
approaches [17,18]. Approaches based on SAT and SMT were proposed in the last
decade, with promising results [12,13,20,21,25]. Nevertheless, the size of existing
propositional encodings do not scale for large DFA inference problems. The use
of SMT does not represent a clear improvement, since SMT solving approaches
for the MinDFA problem will also encode to propositional logic. This paper revis-
its SAT encodings for the MinDFA problem as well as recent work on exploiting
symmetry breaking [25,30], and proposes a (novel) tighter propositional repre-
sentation of state-of-the-art symmetry breaking predicates, but it also devises
new symmetry breaking constraints which serve to achieve more effective prun-
ing of the search space. The new propositional encoding proposed in this paper
enables clear performance gains over the state of the art [13,14,26,30].

The paper is organized as follows. Section 2 introduces the definitions used
throughout the paper and briefly overviews related work. Section 3 develops new
ideas to encode symmetry breaking predicates. Section 4 compares a new tool
for the MinDFA problem with the existing state of the art, showing clear per-
formance gains. Section 5 concludes the paper.

2 Background

2.1 Preliminaries

Throughout the paper we assume that automata are defined over some set of
symbols Σ, also known as the alphabet. The number of symbols in the alphabet
is L = |Σ|. For earlier DFA inference examples, it was often the case that
Σ = B = {0, 1} [18,22]. For more recent DFA inference examples [28], larger
alphabets are often considered.

A deterministic finite automaton (DFA) is a tuple D = (D,Σ, δ, d1,D
+,D−),

where D is a finite set of states, Σ is the (input) alphabet, δ : D × Σ → D is
the transition function, d1 is the initial state, D+ is the set of accepting states
and D− = D \ D+ is the set of rejecting sets. For input strings π ∈ Σ∗ we
define δ̂(d1, π) inductively as follows [16]: (i) δ̂(d1, ε) = d1; (ii) If π = π′c, then
δ̂(d1, π) = δ(δ̂(d1, π′), c).

We assume the standard setting of inferring a minimum-size DFA given a
set of samples of its behavior [7,15], i.e. the training set, each sample rep-
resented by an input string that is either accepted or rejected by some DFA
U = (U,Σ, μ, u1, U

+, U−), which is not known. This form of learning is often
referred to as passive learning, as opposed to active learning [2,20], which enables
a learning algorithm (aiming to create a target DFA) to formulate queries to some
teacher (which knows of the unknown DFA).

A training set is a set of pairs T = {(π1, o1), . . . , (πR, oR)}, where each pair
(πr, or) ∈ Σ∗ × {0, 1} denotes the output or observed given input string πr. If
or = 1 (or = 0), then πr is referred to as a positive (negative) example. Given
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Function MinimumDFA(T )
Input : T : APTA
Output: S: minimum size DFA

1 M ← FindLowerBound(T )
2 while true do
3 S ← FindConsistentDFA(T ,M)
4 if S �= ∅ then return S
5 M ← M + 1

Algorithm 1: General lower bound refinement algorithm

a training set, we can construct an APTA (augmented prefix tree acceptor) [1,
13,24], defined as the DFA T = (T,Σ, τ, t1, T

+, T−), where any input string
sharing the same prefix ends up in the same state. Concretely, given input strings
π1 = πaπb1 and π2 = πaπb2 the common prefix πa will be associated to a unique
sequence of states in the APTA. For an APTA T , we have T+ ∪ T− �= T , and
we define N = |T |. When clear from the context, the states of T are referred to
by their index, ti by i, i = 1, . . . , N . In some settings, θ(i) will be used to denote
the distance from the APTA root state t1 to state ti.

The minimum-size DFA inference problem (MinDFA) is to identify a DFA
S = (S,Σ, σ, s1, S

+, S−), with a minimum number of states, such that for any
training pair (πr, or), σ̂(s1, πr) ∈ S+ iff or = 1 and σ̂(s1, πr) ∈ S− iff or = 0.
For a prospective DFA S, we define M = |S|.

Throughout the paper [R] is used to denote the set {1, . . . , R}, for some
positive integer R. Moreover, we will use integers to refer to either symbols or
states. For a given alphabet, by associating states and symbols with integers
facilitates imposing a fixed lexicographic order, which will be required later in
the paper (see Sect. 3). Additionally, standard SAT definitions are assumed and
used [5].

2.2 Minimum Size DFA Inference

This paper focuses on constraint-based exact approaches for the MinDFA prob-
lem. Different constraint programming approaches for solving the MinDFA prob-
lem have been proposed over the years. More recently, the use of SAT [12–14]
and SMT [20,21] has been investigated. A more detailed account of past work
is available for example in Neider’s PhD thesis [20, Chap. 3].

Algorithm 1 summarizes the most widely used approach for computing a
minimum size DFA consistent with a given APTA T (obtained from the training
set). Initially a lower bound on the size of the inferred DFA is computed. An
often used heuristic is to compute a maximal clique on states of the APTA
that cannot be assigned to the same DFA state [12–14,20–22,26]. Afterwards,
starting from the lower bound and for each possible value on the number of states
of the DFA, some algorithm decides whether there exists a DFA S which can
be shown consistent with the samples of behavior summarized as the APTA T .
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Algorithm 1 is referred to as LSUS (linear-search, UNSAT until SAT) and is used
in different settings. Other algorithms can be envisioned. These include binary
search, assuming some upper bound is known or can be identified (e.g. with
merge-based algorithms). Another alternative is unbounded search with a final
binary search step. These algorithms have been used in recent years for solving
MaxSAT [19] and for extracting MUSes [4]. The use of propositional encodings
can be traced to the work of Grinchtein, Leucker & Piterman [12]. By using
two different representations for integers, one in unary and the other in binary,
this work proposes two propositional encodings. For the unary representation,
the encoding size is in O(N × M2 + N2 × M) over O(N × M) variables1. For
the binary representation, the encoding size is in O(N × M × log M + N2 × M)
on O(N × log M) variables. More recent work by Heule&Verwer (HV) [13,14]
proposed encodings that have been shown effective in practice [28]. The HV
encoding builds on the graph coloring analogy proposed in earlier work [8]. The
proposed encoding has size O(M3 + N × M2) over O(M2 + N × M) variables.
This encoding is revisited in Sect. 2.3.

2.3 SAT-Based MinDFA

Given an APTA T and a bound M on the number of states of the inferred
DFA S, this subsection provides a derivation of the HV encoding [13,14], based
on a different motivation. By careful analysis of this formulation, we achieve a
more compact propositional encoding. Instead of relating the MinDFA problem
with graph coloring, we formulate it as the problem of matching the N states
of the APTA T to the M states of a target DFA S. The sets of variables of the
propositional encoding are as follows:

1. mi,p which is 1 iff state ti in T is matched with state sp in S.
2. ev,p,q which is 1 iff there is a transition from sp to sq on symbol lv in S.
3. ap which is 1 iff sp is accepting in S.

The constraints of the proposed encoding are summarized in Table 1. Observe
that for encoding the Equals1 constraints, [14] uses a clause to encode an AtLeast1
constraint, and the Pairwise Encoding for encoding an AtMost1 constraint.
A simple improvment is to use a more compact encoding, among the many
that exist. Concrete examples include sequential counters [23], cardinality net-
works [3], the ladder encoding [11], sorting networks [10], among several other
options. As can be concluded, the proposed encoding grows with O(N × M2).
Thus, the encoding is asymptotically (somewhat) tighter than the encoding pro-
posed in [13], in that the encoding of the cardinality constraints changes from
O(M3) to O(M2). This difference can be significant for large values of M . As
observed in earlier work [13,14], for some benchmarks [18], the target DFA has
hundreds of states, and so an encoding in O(M3) is expected to be beyond the
memory capacity of existing compute servers. It is straightforward to map the
1 The encoding size shown is adapted from the results in [20], taking into account that

both |T+| and |T−| can grow with N = |T |. The size of |Σ| is assumed constant.
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Table 1. Constraints of the SAT encoding

Constraint Range

(
∑M

p=1 mi,p) = 1 i ∈ [N ] Each state ti in T is matched
with exactly one state in S

mi,p → ap i ∈ [N ]; ti ∈ T +;
p ∈ [M ]

Each accepting state ti in T is
matched with an accepting
state in S

mi,p → ¬ap i ∈ [N ]; ti ∈ T −;
p ∈ [M ]

Each rejecting state ti in T is
matched with a rejecting state
in S

(
∑M

q=1 ev,p,q) = 1 v ∈ [L]; p ∈ [M ] There is exactly one transition
from sp on some symbol lv in S

mi,p ∧ mk,q → ev,p,q i, k ∈ [N ]; v ∈ [L];
σ(ti, lv) = tk;
p, q ∈ [M ]

A transition between ti and tk
on lv in T forces a transition
between its mapped nodes on
the same lv in S

mi,p ∧ ev,p,q → mk,q i, k ∈ [N ]; v ∈ [L];
σ(ti, lv) = tk;
p, q ∈ [M ]

A transition between ti and tk
on lv in T , with a transition
between the mapped state p
and a state q on lv in S, forces
a mapping between tk and q

sets of clauses in the HV formulation [13,14] into the constraints described above.
The main difference is that we explicitly use a tighter encoding for the AtMost1
constraints, which are listed as sets of clauses (capturing the well-known pairwise
encoding) in [13]. Additionally, the HV formulation [13] considers different sets
of redundant constraints to the basic formulation above. A technique that has
been proposed for the SAT formulation is the breaking of symmetries of the DFA
constructed [26,30]. Symmetry breaking for the SAT formulation is described in
depth in Sect. 3, together with new improvements.

3 Efficient Symmetry Breaking

This section revisits recent symmetry breaking for the MinDFA problem, which
imposes an order on the states of the DFA [26,30]. Although effective in practice,
the existing propositional encoding is not tight, and so unlikely to scale for larger
DFAs. Section 3.2 develops a significantly tighter encoding. Section 3.3 devises
novel constraints that serve to furhter prune the search space that a SAT solver
needs to explore.

3.1 Propositional Formulation for Breaking Symmetries

This section summarizes the recent work on breaking symmetries of the DFA
being constructed, by imposing an ordering on the states of the DFA [26,30].
In this section we follow the original formulation [26]. The approach can be
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formalized as follows. Assume a target DFA S = (S,Σ, σ, s1, S
+, S−). The states

of the DFA S are required to be numbered according to the tree induced by a
breadth-first search (BFS) of the target DFA. As a result, the formulation of
symmetry breaking depends only on the states and transitions of the target
DFA S (independent of the APTA T ). In this section we require some fixed (e.g.
lexicographic) ordering on the symbols of Σ. Any order of the symbols is valid.
The symbols will be numbered from 1 to L, but the numbers respect the fixed
ordering.

The propositional variables used in the formulation are as follows:

1. pq,r, with 1 ≤ r < q ≤ M . pq,r = 1 iff state r is the parent of q in the BFS
tree.

2. tp,q, with 1 ≤ p < q ≤ M . tp,q = 1 iff there is a transition from p to q in S.
3. mv,p,q, with v ∈ Σ and 1 ≤ p < q ≤ M . mv,p,q = 1 iff there is a transition

from state p to state q on symbol lv and there is no such transition with a
lexicographically smaller symbol.

The clauses of the propositional formulation are summarized in Eqs. (1–6).
∧

2≤q≤M (pq,1 ∨ pq,2 ∨ · · · ∨ pq,q−1) (1)
∧

1≤r<s<q<M (pq,s → ¬pq+1,r) (2)
∧

1≤r<q≤M (tr,q ↔ e1,r,q ∨ · · · ∨ eL,r,q) (3)
∧

1≤r<q≤M (pq,r ↔ tr,q ∧ ¬tr−1,q ∧ · · · ∧ ¬t1,q) (4)
∧

1≤r<q≤M

∧
1≤v≤L (mv,r,q ↔ ev,r,q ∧ ¬ev−1,r,q ∧ · · · ∧ ¬e1,r,q) (5)

∧
1≤r<q<M

∧
1≤u<v≤L (pq,r ∧ pq+1,r ∧ mv,r,q → ¬mu,r,q+1) (6)

There are six types of conjunction of clauses considered. (1) relates to the states,
and with the exception of the initial state (numbered 1), each clause says that a
state must have a parent with smaller number. (2) says that a state q must be
enqueued (in the BFS traversal) before the next state q + 1, and so the parent
r of q + 1 cannot be less than the parent s of q. (3) and (4) define the tq,r
variables based on the ev,q,r variables and relate them to the parent variables
pq,r. (5) defines the mv,p,q variables using DFA transitions, and the (6) imposes
consecutive states q and q+1 with the same parent r to be arranged in the order
of the symbols. It is plain to conclude that the size of the encoding grows with
O(M3 + M2L + M2L2). Observe that the contribution of M3, which dominates
the other components assuming L � M , results from (2) and (4). Moreover,
when |Σ| = 2, [26] proposes to replace (5) and (6) with

∧

1≤r<q<M

(pq,r ∧ pq+1,r → e1,r,q) (7)

3.2 A Tighter SAT Encoding

A propositional encoding in O(M3 +M2L2 +M2L) is impractical for the larger
DFA inference instances [18,28]. This section shows how to modify the symmetry
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breaking propositional encoding of Sect. 3.1 such that the encoding size becomes
O(M2L). The new encoding develops alternative representations for (2) and the
(4), but also for (5) and (6). In addition, one needs to require:

∑q−1
r=1 pq,r = 1 1 < q ≤ M (8)

We first investigate the encoding of (2) and (4). We can view the values of
pq,r, with 1 ≤ r ≤ q − 1, as a binary string, with q − 1 bits, and compare this
string with the one of pq+1,r, with 1 ≤ r ≤ q, and so with q bits. We introduce
pq,q = 0, and so can also view the values of pq,r as a binary string with q bits
(same size).

Observe that (2) encodes the value associated to the binary string of the
pq,r variables to be smaller or equal than the value associated to the binary
string of the pq+1,r variables. To compare the binary strings, we inspect the bits
in order, starting at position q, and moving down to position 1. We consider
variables ngq,r, such that ngq,r = 1 iff the most significant q − r + 1 bits of the
string associated with pq,r are lexicographically no greater than those of pq+1,r.
The value associated to the binary string of the pq,r variables is smaller or equal
than the value associated to the binary string of the pq+1,r variables iff ngq,1 = 1
holds. Since we enforce pq,q = 0, then we must have ngq,q = 1. Moreover, we
also require ngq,1 ↔ 1. Thus we obtain:

(ngq,1 ↔ 1) ∧ (ngq,q ↔ 1) ∧
∧

1≤r<q

(ngq,r ↔ ngq,r+1 ∧ eqq,r ∨ pq,r ∧ ¬pq+1,r) (9)

where, eqq,r ↔ (pq,r ↔ pq+1,r).
Second, a similar approach can be exploited for encoding of (4). We introduce

variables ntr,q, where ntr,q = 1 iff there exists no ts,q = 1 with s < r. Thus, ntr,q
can be defined inductively as follows:

(nt0,q ↔ 1) ∧
∧

1<r<q

(ntr,q ↔ ntr−1,q ∧ ¬tr,q) (10)

Thus, (4) can be rewritten, using the ntr,q variables as follows:

pq,r ↔ tr,q ∧ ntr−1,q (11)

As can be concluded, by using auxiliary variables ngq,r and ntr,q, and Eqs. (9),
(10) and (11), we achieve an overall propositional encoding in O(M2L+M2L2).

However, we can tighten further the propositional encoding for breaking sym-
metries using a BFS tree. This is achieved by devising alternative encodings for
(5) and (6). As shown next, this yields a propositional encoding in O(M2L).
With respect to (5), we use the additional variables nev,r,q such that nev,r,q = 1
iff all variables eu,r,q = 0 with u < v, i.e. there are no variables eu,r,q taking
value 1, when u < v.

(ne1,r,q ↔ ¬e1,r,q) ∧
∧

1<v<L

(nev,r,q ↔ ¬ev,r,q ∨ nev−1,r,q) (12)
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Thus given (12), (5) can be rewritten as follows:
∧

1≤r<q≤M

∧

1≤v≤L

(mv,r,q ↔ ev,r,q ∧ nev−1,r,q) (13)

With respect to (6), we use the additional variables zmv,r,q such that
zmv,r,q = 1 iff all variables mu,r,q are 0-valued, mu,r,q = 0, for u < v.

(zm1,r,q ↔ ¬m1,r,q) ∧
∧

1<v<L

(zmv,r,q ↔ ¬mv,r,q ∧ zmv−1,r,q) (14)

Thus given (14), (6) can be rewritten as follows:
∧

1≤r<q≤M

∧

1≤v≤L

(pq,r ∧ pj+1,r ∧ mv,r,q → zmv−1,r,q+1) (15)

One can thus conclude that the resulting propositional encoding size is in
O(M2L).

3.3 Exploiting BFS-Based Breaking of Symmetries

This section investigates techniques for developing additional constraints when
imposing the ordering of states dictated by a BFS tree of the DFA. Figure 1
shows a possible BFS tree illustrating the largest state numbers that can be the
children of some other state. The additional constraints proposed in this section
will relate with Fig. 1.

1

2

L+ 2 L+ j + 1 2L+ 1

...

r

(r − 1)L+ 2 (r − 1)L+ j + 1 rL+ 1 1 ≤ j ≤ L

L+ 1

L2 + 2 L2 + j + 1 L2 + L+ 1

1 L

1
j

L 1
j

L

1
j

L

.. ..

.. .. .. ..

.. ..

Fig. 1. (Worst case) BFS tree with the largest state numbers that can be the children
of some other state. Note that 1 ≤ j < L.

BFS-Induced Properties. Although we have introduced pq,r such that r <
q ≤ M , it is possible to refine the range of q given r.

Property 1. Given a state r, with 1 ≤ r ≤ M , in the BFS tree, r can be the
parent of states in the range r + 1 to rL + 1.
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Figure 1 illustrates the argument for the upper bound on the number of
the children of r. We can conclude that the value of pq,r can be non-zero for
r + 1 ≤ q ≤ rL + 1, which also impacts the possible values of some of the ev,r,q
and the tr,q variables.

Property 2. For q > rL + 1 and v ∈ [L], then pq,r = 0, ev,r,q = 0, and tr,q = 0.

Given that the BFS tree assumes a fixed ordering not only on the states but
also on the input alphabet, it is possible to identify other transitions that must
be forced to value 0 (based on the ordering of the symbols). Hence, we have the
following.

Property 3. ev,r,rL+2−j = 0 for j ∈ [L − 1] and v ∈ [L − j].

The above observations enable to devise the additional constraints described
in the remainder of this section. The constraints are organized as shape or range,
but also result from information from the APTA and the BFS distance.

Shape Constraints. The possible values of pq,r respect a continuity property,
dictated by the BFS traversal, in that all children of r are consecutively num-
bered, and there can be at most L of these. This continuity property can be
encoded using additional variables. Let lnpq,r be assigned value 1 iff r is the
parent of q + 1 but not of q (lnp stands for left-no-parent). Thus,

¬pq,r ∧ pq+1,r → lnpq,r (16)

Moreover, we have the following:

(lnpq,r → ¬pq,r) ∧
∧

r+1<q≤M

(lnpq,r → lnpq−1,r) (17)

Thus, lnpq,r is 1 from q = 1 until the value of q such that pq+1,r holds.
In a similar fashion, let rnpq,r be assigned value 1 if and only if r is the

parent of q − 1 but not of q (in this case, rnp stands for right-no-parent). Thus,

pq−1,r ∧ ¬pq,r → rnpq,r (18)

Similarly to the previous case, one can exploit the rnpq,r variables, and derive
the following constraints:

rnpq,r → rnpq+1,r r ≤ q < M
rnpq,r → ¬pq,r
rnpq,r → ¬ev,q,r v ∈ [L]

(19)

Thus, rnpq,r is 1 from q = M until the value of q such that pq−1,r holds.
Another observation is that r can be the parent of at most L states, due to

L outgoing transitions. As a result, we get,

pq,r → rnpq+L,r if q + L ≤ M
pq,r → lnpq−L,r if q − L ≥ r + 1 (20)
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The lnpq,r and rnpq,r variables serve to force pq,r variables to be assigned value
0. However, under some circumstances, we can infer that some pq,r variables
must be assigned value 1. For example, for the range of values of q for which
both lnpq,r and rnpq,r are 0, the value of pq,r must be 1. Thus,

¬lnpq1,r ∧ ¬rnpq2,r → pq′,r

q1 < q′ < q2
q1 < q2 ≤ min(q1 + L − 1, rL + 1,M)

r + 1 ≤ q1 < min(rL + 1,M)
(21)

For any q1, q2 can range from q1 + 1 to at most q1 + L. Similarly, we can write,

pq,r ∧ ps,r → ps−1,r
q < s ≤ min(q + L − 1, rL + 1,M)

r + 1 ≤ q < min(rL + 1,M) (22)

As above, for any r, s can range from r + 1 to at most r + L.

Range Constraints. Given a reference state r, we have shown above that the
states of which r can be a parent of range from r + 1 until rL + 1. Moreover,
we also know there is a continuity property, which causes r to be the parent
of at most L states, numbered consecutively. This information can be used for
constraining the pq,r variables, between states for which r cannot be a parent,
as follows,

pq,r → ¬pq+L,r q ∈ {l | (l ≥ r + 1) ∧ (l + L ≤ M) ∧ (l + L ≤ rL + 1)} (23)

In addition, we get the following stronger condition by directly forcing the value
of ev,r,q variables,

pq,r → ¬ev,r,q+L
q ∈ {l | (l ≥ r + 1) ∧ (l + L ≤ M) ∧ (l + L ≤ rL + 1)}

v ∈ [L] (24)

Furthermore, we can exploit Property 3, and the imposed ordering of the symbols
in the BFS to identify a similar extension to (24) as follows,

pq,r → ¬ev,r,q+j

r + 1 ≤ q ≤ min(rL + 1,M)
j ∈ {l | l ∈ [L − 1] ∧ (q + l ≤ M) ∧ (q + l ≤ rL + 1)}

v ∈ [j]
(25)

Minimum BFS Distance. Given the way the BFS vertices are visited, one can
guarantee a minimum BFS shortest path distance for each state. For state q, the
shortest BFS path length is given by Dmin(q) = �logL (q(L − 1) + 1) − 1�, with
q > 1, i.e. no matter how the BFS is organized starting at state 1, the shortest
path from 1 to q is never less than Dmin(q). As a result, if Dmin(q) > θ(i), then
mi,q = 0. Observe that, under any possible setting in the DFA, the shortest path
to q is larger than the distance to state i in the APTA. Thus, to get to q it would
require more transitions that those allowed to get from inital state to i.
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Exploiting APTA Information. By exploiting the variables and constraints
used for breaking symmetries and using a BFS tree on the target DFA, we can
devise additional constraints. Observe that, if the depth of a state i in the APTA
is some value K, then in the DFA, we must be able to move from 1 to q in K of
fewer transitions. However, if the shortest path from 1 to q in the DFA exceeds
the depth K of vertex of i in the APTA, then it would be impossible to move
from state 1 to state q in K or fewer transitions.

We consider the propositional variables dq,j , with q ∈ [M ] and 1 ≤ j < q,
such that dq,j = 1 iff the length of the shortest path in the BFS tree from state
1 to q is j. Moreover, we consider propositional variables seq,j , with q ∈ [M ] and
1 ≤ j < q, such that seq,j = 1 iff the length of the shortest path in the BFS
tree from state 1 to q is smaller than or equal to j. We can use an inductive
definition for seq,j as follows:

seq,0 ↔ 0 and seq,j ↔ seq,j−1 ∨ dq,j (26)

Similarly to Sect. 3.2, we devise a tight encoding for the definition of the dq,j
variables, suitable for larger problem instances. The insight is to introduce addi-
tional variables, which are inductively defined. Let erq,r,j be such that erq,r,j = 1
iff there exists some index r < q such that pq,r = 1 and dr,j = 1.

erq,r,j ↔ pq,r ∧ dr,j ∨ erq,r+1,j j < r < q − 1
erq,q−1,j ↔ pq,q−1 ∧ dq−1,j

(27)

we can now derive constraints on the mi,p variables. Let ti be a state of the
APTA such that the depth of ti is I. We can define dq,j as follows:

dq,j ↔ ¬seq,j−1 ∧ erq,j,j−1 (28)
¬seq,I → ¬mi,q (29)

One can conclude that the modified constraints have an encoding size in O(N ×
M2).

4 Experimental Results

This section evaluates the ideas described above, namely a compact SAT encod-
ing and symmetry breaking predicates for solving the MinDFA problem. For
this, the ideas were implemented on top of a known MinDFA solver called
DFA-Inductor [26,30] written in Java2. The new prototype is referred to as
DFA-Inductor 2. For comparison, two competitors were considered: the original
DFA-Inductor and also dfasat [13]. All the selected tools apply the Glucose 4.13

SAT solver iteratively and non-incrementally, i.e. each call to the oracle is made
from scratch. All the conducted experiments were performed in Ubuntu Linux
on an AMD Opteron 6378 2.40 GHz processor with 496GByte of memory. For

2 https://github.com/ctlab/DFA-Inductor.
3 http://www.labri.fr/perso/lsimon/glucose/.

https://github.com/ctlab/DFA-Inductor
http://www.labri.fr/perso/lsimon/glucose/
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Fig. 2. Detailed performance of dfasat, DFA-Inductor, and DFA-Inductor 2

each individual process, the time limit was set to 600 s and the memory limit to
1 GByte. For the comparison, a number of benchmark instances were randomly
generated, following the procedure described in [30]. Concretely, starting from a
randomly generated APTA of even size N , N ∈ [20, 36], 50 × N samples were
generated. The size of the Σ is two. For each even number N ∈ [20, 36], exactly
100 benchmark instances were created such that given value N , the resulting
DFA for each of the corresponding 100 instances is guaranteed to be N . This
way, the number of benchmark families defined by values N is 9. Thus, the total
number of instances considered is 900. Figure 2a shows a cactus plot depicting the
performance of all the selected solvers. As one can observe, dfasat is significantly
outperformed by the compact encoding implemented in DFA-Inductor. In total,
dfasat is able to solve only 51 benchmark instances (out of 900). Also observe that
the symmetry breaking predicates described above further improve the perfor-
mance of DFA-Inductor (see DFA-Inductor 2 compared to DFA-Inductor in the
Fig. 2a). A comparison between DFA-Inductor and DFA-Inductor 2 is detailed
in Fig. 2b and also in Table 2. Except for a few outliers, the symmetry breaking
predicates of DFA-Inductor 2 are responsible for 20–40% performance improve-
ment on average. Also it is important to note that the harder the problems are,
the smaller is the performance gap between the two configurations. Although
this can be seen as a drawback, the phenomenon requires further investigation
on the use of symmetry breaking with various SAT solvers and a multitude
of families benchmark sets. In total, the number of instances solved by DFA-
Inductor and DFA-Inductor 2 is 678 and 731, respectively, thus, comprising a
gap of 53 benchmark instances. Therefore, symmetry breaking brings more 7.2%
instances solved.
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Table 2. The effect of applying the symmetry breaking predicates described above.
The solver configuration using the proposed symmetry breaking is referred to as DFA-
Inductor 2 and compared to the base configuration, i.e. DFA-Inductor. If an instance is
timed out, its contribution to the average time of the corresponding benchmark family
is assumed to be 600 s. The corresponding values are written in italic.

N DFA-Inductor DFA-Inductor 2
min avg max # solved min avg max # solved

20 86.8 148.3 221.0 100 33.3 91.9 228.4 100

22 85.5 147.1 — 99 49.2 100.4 — 99

24 128.6 181.5 287.8 100 80.4 136.8 262.5 100

26 158.1 251.8 — 99 114.8 209.3 — 99

28 223.4 317.9 534.5 100 164.2 268.9 — 99
30 307.2 443.8 — 91 227.1 389.2 — 95

32 326.0 506.5 — 76 249.2 447.4 — 86

34 414.5 591.1 — 13 392.1 569.9 — 41

36 — 600.0 — 0 448.4 594.8 — 12

5 Conclusions

This paper proposes a number of novel techniques for encoding and reason-
ing about symmetries when exploiting SAT oracles for inferring minimum-size
DFAs. The experimental results provide evidence of the improvements that can
be achieved when compared with the state of the art [26,30], also enabling
significant gains over the best exact methods proposed in recent years [13].
The novel symmetry-breaking ideas described in the paper can be applied to
other approaches for inferring minimum-size DFAs, including the use of SMT
solvers [20], and also in other settings.
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10. Eén, N., Sörensson, N.: Translating Pseudo-Boolean constraints into SAT. JSAT
2(1–4), 1–26 (2006)

11. Gent, I.P., Nightingale, P.: A new encoding of all different into SAT. In: Workshop
on Modelling and Reformulating Constraint Satisfaction Problems, pp. 95–110
(2004)

12. Grinchtein, O., Leucker, M., Piterman, N.: Inferring network invariants automat-
ically. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130,
pp. 483–497. Springer, Heidelberg (2006). https://doi.org/10.1007/11814771 40

13. Heule, M.J.H., Verwer, S.: Exact DFA identification using SAT solvers. In: Sem-
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