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Abstract

Background: Inference of complex demographic histories is a source of information about events that happened in the past of studied
populations. Existing methods for demographic inference typically require input from the researcher in the form of a parameterized
model. With an increased variety of methods and tools, each with its own interface, the model specification becomes tedious and
error-prone. Moreover, optimization algorithms used to find model parameters sometimes turn out to be inefficient, for instance, by
being not properly tuned or highly dependent on a user-provided initialization. The open-source software GADMA addresses these
problems, providing automatic demographic inference. It proposes a common interface for several likelihood engines and provides
global parameters optimization based on a genetic algorithm.

Results: Here, we introduce the new GADMA? software and provide a detailed description of the added and expanded features. It
has a renovated core code base, new likelihood engines, an updated optimization algorithm, and a flexible setup for automatic model
construction. We provide a full overview of GADMA2 enhancements, compare the performance of supported likelihood engines on
simulated data, and demonstrate an example of GADMA2 usage on 2 empirical datasets.

Conclusions: We demonstrate the better performance of a genetic algorithm in GADMA?2 by comparing it to the initial version and
other existing optimization approaches. Our experiments on simulated data indicate that GADMAZ2’s likelihood engines are able to
provide accurate estimations of demographic parameters even for misspecified models. We improve model parameters for 2 empirical

datasets of inbred species.
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Introduction

The evolutionary forces form a genetic variety of closely related
species and populations. Principal historical events like diver-
gence, population size change, migration, and selection could be
reconstructed from the genetic data using different algorithmic
and statistical approaches. Inference of complex demographic
histories is widely applied in conservation biology studies to iden-
tify major events in the population’s past [1-3]. It supplements
archaeological information about the historical processes that
have left no paleontological records. Finally, demographic histo-
ries form the basis for subsequent population studies and medical
genetic research.

In recent years, many methods for demographic inference have
appeared to investigate the demographic histories of species or
populations [4-12]. Some of them give a point estimate for the
unknown demographic parameters [4, 7, 11] while others give the
distribution thereof [5, 6, 8]. In this article, we focus inclusively on
the former. Most methods that provide point estimates consist of
2 independent components. The first component provides means
to compute data statistics under a proposed demographic history

and compare them with real data by the log-likelihood value. One
of the most widely used data statistics is the allele frequency spec-
trum (e.g., [4, 7, 10]). However, newer methods based on 2-locus
[13] and linkage disequilibrium (LD) statistics [14, 15] have also
become available. This article will denote the first component as
an likelihood engine. The second component of existing tools is opti-
mization. It requires a user-defined model of demographic history
and performs a search of the maximal likelihood model param-
eters using different optimization algorithms. While a number of
optimization techniques are provided, they often turn out to be
ineffective in practical applications [16].

In 2020, we presented a new software GADMA [16] for unsu-
pervised demographic inference from the allele frequency spec-
trum (AFS) data. It provides a common interface for various
already existing likelihood engines and introduces new global
search optimization based on a genetic algorithm. GADMA does
not require complicated model specification. Instead, it takes
model structure that determines how many time epochs are in-
cluded in the model. Previously, models of demographic history
were parameterized only by continuous parameters and had fixed
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Figure 1: Scheme of GADMA2. New features and enhancements are marked with a gradient gray color. GADMA?2 takes input genetic data presented in
either AFS or VCF formats, engine name, and model specifications and provides inferred model parameters, visualization, and descriptions of the final

demographic history.

population size dynamics. Constant size or exponential growth
could be examples of such dynamics. GADMA’s model with struc-
ture extends the regular concept of a model by including dy-
namics as discrete model parameters. Thus, it can automati-
cally construct history as a sequence of time epochs with desired
parameter types from blocks of constant, linear, and exponen-
tial size changes. The researcher has control over the types of
model parameters to infer. For example, all migrations could be
disabled.

It was shown that the proposed genetic algorithm approach
in GADMA has better performance than previously existing op-
timization algorithms both on simulated and real datasets [16].
GADMA proved itself capable of finding demographic histories
that attain higher log-likelihood than the histories reported in
the literature and obtained using the default optimization rou-
tines of dadi or moments. Moreover, using demographic models
with structure, GADMA was able to find a new demographic his-
tory of modern human populations that is both paleontologically
plausible and has better log-likelihood than the existing “Out-of-
Africa” scenario from Gutenkunst et al. [4]. Since its initial publi-
cation, GADMA has been applied in several studies on a variety
of species: Xiong et al. [17], Valdez and D’Elia [18], Pazhenkova
and Lukhtanov [19], Cassin-Sackett et al. [20], and Buggiotti
[21].

Theinitial version of GADMA features only 2 likelihood engines:
0291 [4] and moments [7]. Both of these engines compute the allele
frequency spectrum statistics using the Wright-Fisher diffusion-
based approach and thus provide similar results. Among the vari-
ety of other available tools, we can highlight methods based either
on AFS (momi2, fastsimcoal2), LD statistics (momentsLD), or haplo-
type data (diCal2) as potential additions to the supported engines
in GADMA. Some already implemented features of 9adi and mo-
ments, like the inference of selection and dominance rates, are not
included in the first version of GADMA. Both 9adi and moments
have been upgraded since these programs were first published
and since GADMA’s initial release. For example, 9adi introduced
inference of the inbreeding coefficients [22], started to support de-
mographic histories involving 4 and 5 populations and enabled

graphics processing unit support [23]. In light of these advance-
ments, we have sought to extend GADMA in several directions to
support new features and engines and further enhance its opti-
mization algorithm.

In this article, we describe new capabilities implemented in
GADMA?2. We compare supported likelihood engines of GADMA?2
on 2 simulated datasets for different demographic models. Fur-
thermore, we demonstrate the efficiency of the updated version
on 2 empirical datasets of inbred species from Blischak et al. [22].

GADMA? has an updated core codebase and implements a
more efficient and flexible unsupervised demographic inference
method. The improved version extends the initial GADMA in
several ways (Fig. 1). First, the genetic algorithm in GADMA?2
is improved by hyperparameter optimization. New values of
the genetic algorithm hyperparameters that provide more effi-
cient and stable convergence are found. Second, GADMA2 pro-
vides more flexible control of the model specification for au-
tomatic model construction. For example, it is possible to in-
clude inferences about selection and inbreeding coefficients.
Third, 2 new likelihood engines are integrated: momi2 and mo-
mentsLD. Thus, GADMA?2 supports 4 engines overall. Lastly, sev-
eral functional enhancements are integrated, including the abil-
ity to use data in variant call format (VCF) format and new en-
gines for history representation and visualization (momi2 and
demes).

We use several datasets in this work. Datasets for the hyperpa-
rameter optimization are taken from the Python package dem-
inf data v1.0.0 (Supplementary Fig. S1) that is available on
GitHub via the link [24]. Deminf data contains various datasets
with both real and simulated AFS data. Simulations are performed
with moments [7] software. Each dataset is named according to the
convention described in Supplementary Fig. S1 and includes (i) the
allele frequency spectrum data, (ii) the model of the demographic
history, and (iii) bounds of the model parameters. Full descriptions
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Figure 2: Demographic histories used in data simulations powered by
stdpopsim [25] for performance comparison of GADMA?2 likelihood
engines. (a) History of African (AFR) and European (EUR) populations of
Drosophila melanogaster from Li and Stephan [27]. (b) History of Pongo
pygmaeus (Bornean) and Pongo abelii (Sumatran) orangutan species from
Locke et al. [30].

of the data and demographic model parameters of datasets are
available in the repository on GitHub. For hyperparameter opti-
mization, we used 10 datasets from deminf data: 4 as training
problem instances and 6 for testing. Basic descriptions of these
datasets are available in section S1.1 of the Supplementary Mate-
rials.

The performance of GADMA2’s engines is evaluated on 2 sim-
ulated datasets: populations of fruit flies and orangutan species.
For simulation purposes, we used a previously described scenarios
available within the stdpopsim library [25]. Each dataset simulated
by msprime engine [26] includes genetic data of 5 diploid individ-
uals per each population.

Li and Stephan [27] presented the demographic history of
Drosophila melanogaster populations from Africa and Europe. The
visual representation of the history is shown in Fig. 2a. The African
population is characterized by a single instantaneous expansion.
The origin of the European population is a result of the divergence
of a very limited number of individuals followed by instantaneous
expansion. Five autosomal chromosomes with a total length of
0.11 Gbp are simulated under this demographic history. We use a
mutation rate equal to 5.49 - 10~ per base per generation [28] and
a recombination rate of 8.4 - 107 per base per generation [29].

The demographic history of the Bornean (Pongo pygmaeus)
and Sumatran (Pongo abelii) orangutans was originally inferred
in Locke et al. [30] and is shown in Fig. 2B. Specifically, it is an
isolation-with-migration history that describes the ancestral pop-
ulation split followed by the exponential growth of Sumatran and
an exponential decline of Bornean orangutans. We simulate 23
autosomal chromosomes with a total length of 2.87 Gbp. The mu-
tation rate used in the simulation is equal to 1.5 - 1078 per site per
generation [31]. Averaged recombination rates for each chromo-
some are taken from the Pongo abelii recombination map inferred
in Nater et al. [31].

Datasets for the demographic inference of inbred species are
taken from the original study by Blischak et al. [22]. The 11 x 5
AFS data for 2 populations of the American puma (Puma concolor)
were constructed on the basis of Ochoa et al. [32]. The AFS data
for 45 individuals of domesticated cabbage (Brassica oleracea) were
obtained from publicly available resequencing data [33, 34]. Both
allele frequency spectra are folded due to a lack of information
about ancestral alleles. Datasets are presented in the repository
of the original article and are available via the following link [35].

Hyperparameter optimization
GADMA uses a genetic algorithm to optimize the demographic pa-
rameters [16]. A hyperparameter is usually defined as a parameter
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of an algorithm. The performance of any algorithm depends on
its hyperparameters, and optimization of their values can signifi-
cantly improve the overall efficiency. As an example of a hyperpa-
rameter, we can consider the number of demographic models in 1
iteration of the genetic algorithm. Several techniques can be used
for the optimization of hyperparameters, and Bayesian optimiza-
tion is one of the most popular methods [36]. The efficient method
based on the Bayesian optimization is implemented in SMAC soft-
ware [37, 38]. It has been applied in a number of studies, including
optimization of neural networks [39-41].

SMAC addresses the algorithm configuration problem, which
involves determining the optimal hyperparameters for a given
algorithm across multiple instances. As such, it needs to solve
a multiobjective optimization problem. To do this, SMAC uses a
heuristic approach that optimizes a single objective function, the
average value of the given cost function across the entire set of
problem instances. Here we will refer to the objective function
value as the SMAC score. The researcher usually selects the cost
function according to the goal of the optimization process. This
cost function is typically based on factors such as the time re-
quired to solve the problem or the quality of the solution achieved
within a specific budget. It is important to exercise caution when
working with SMAC score: since values of cost function are aver-
aged across a given set of instances, it is essential that they have
the same scale.

We use SMAC to tune the hyperparameters of the genetic algo-
rithm in GADMA?2. We divide all datasets into 2 groups of training
and test datasets. The optimization is performed for GADMA's ge-
netic algorithm using moments engine and 4 training datasets as
problem instances. Test datasets are used to validate the perfor-
mance of the new configurations after optimization using SMAC.
To ensure that the cost function has the same scale across all
problem instances, we select the training datasets such that they
have an identical number of populations and sample size. We
choose the cost function as the best log-likelihood value achieved
by GADMA’s genetic algorithm within a fixed number of like-
lihood evaluations. Regular GADMA’s pipeline, though, may re-
quire less or more evaluations to run depending on the dataset
as it has a stop criterion that is based on the convergence. We
take 200 times the number of dataset parameters as an allowed
number of likelihood evaluations for the genetic algorithm runs
in SMAC. Such a number of evaluations is a trade-off between
speed and accuracy: according to the convergence plots, the con-
vergence of default genetic algorithm optimization is slowing
down at this point and is very close to the plateau walk (Supple-
mentary Fig. S2, Supplementary Fig. S3). We note that we count
the log-likelihood evaluations rather than the iterations of the
genetic algorithm, as 1 iteration may involve multiple evalua-
tions and the number of evaluations can vary across different
configurations.

We perform several attempts of SMAC optimization for differ-
ent variants of hyperparameter configurations. The descriptions
and domains of all hyperparameters are given in Supplemen-
tary Table S1 and Table 1 correspondingly. Each attempt took 2
weeks in 10 parallel processes (Intel® Xeon® Gold 6248). First, op-
timization of all genetic algorithm hyperparameters is executed.
Then, 2 discrete hyperparameters (gen_size andn init const)
are fixed to 5 manually picked combinations of domain val-
ues. SMAC is used to find optimal continuous hyperparame-
ters for each combination. Four combinations were excluded
from the analysis. Hyperparameter gen size that corresponds
to the size of generation in a genetic algorithm is not tested for
the value of 100 due to relatively slow convergence. This elim-
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Table 1: Hyperparameters of the genetic algorithm in GADMA, their domains used in SMAC, and final values after each optimization
attempt with SMAC. Hyperparameter values from attempt 1 are equal to the default GADMA values as SMAC failed to find a better
configuration. For each of 2 to 6 attempts, 2 discrete hyperparameters (gen_size and n_init const) are fixed in order to gain SMAC

efficiency

Attempt number

Hyperparameter ID Domain 1 (default) 2 3 4 5 6

gen size {10, 50, 100} 10 10* 10* 10* 50* 50*

n_init_const (5,10, 20} 10 10* 5+ 20¢ 10* 20*

p_elitism [0, 1] 0.20 0.30 0.30 0.30 0.40 0.40
p_mutation [0,1] 0.30 0.20 0.20 0.20 0.08 0.10
p_crossover [0, 1] 0.30 0.30 0.30 0.30 0.42 0.46
p_random [0,1] 0.20 0.20 0.20 0.20 0.10 0.04
mutation strength [0, 1] 0.200 0.776 0.370 0.534 0.833 0.528
const_mutation_strength [1,2] 1.010 1.302 1.290 1.648 1.199 1.492
mutation rate [0, 1] 0.200 0.273 0.886 0.882 0.595 0.345
const_mutation_rate [1,2] 1.020 1.475 1.942 1.417 1.645 1.472

*These values are fixed during the hyperparameter optimization with SMAC.

inates 3 combinations. Additionally, the constant of initial de-
sighn_init const equal to 5 is excluded for a case of gen size
equal to 50 as it provides a small number of solutions for the first
generation.

Overall, we make 6 attempts of hyperparameter optimization
using SMAC. Unlike the training datasets, the additional 6 test
datasets are selected to be diverse and, as a result, have vary-
ing scales of their likelihood functions. Therefore, it is not cor-
rect to compare new configurations obtained from different SMAC
attempts using the SMAC score calculated across both training
and test datasets. Furthermore, the genetic algorithm within the
SMAC framework was terminated earlier than during a regular
GADMA run. Nevertheless, we first validate the efficiency of SMAC
and make preliminary comparisons of the new configurations for
the AFS-based engines (moments, 9adi, and momi2) using SMAC
scores evaluated across 128 independent runs. Then we compared
new configurations by the log-likelihood values obtained from full
genetic algorithm runs using the usual GADMA stop criterion. We
use the same or equivalent criteria as the initial GADMA version
to terminate the genetic algorithm [16]. For example, the genetic
algorithm with a configuration with a generation size (gen size)
of 10 stops after 100 iterations without improvement, while
the equivalent number of 20 iterations without improvement is
used as a stop criterion for configurations with gen_size equal
to 50.

The new configurations are compared as follows. First, we
measure the speedup, which is the average fraction of the log-
likelihood evaluations saved by a new configuration compared to
the default configuration. Then, we compare each new configu-
ration against the default configuration using the resulting likeli-
hoods and determine its performance as better, worse, or incompa-
rable for each dataset. For a fixed dataset, we consider a new con-
figuration to be better if the median and both quartiles of the 128
likelihood values are higher than these quantities for the default
configuration. If the median and both quartiles are lower, we con-
sider the performance on the dataset to be worse. Otherwise, we
declare the case incomparable. We aim to select a configuration
taking into account both the speedup and the likelihood compar-
isons against the default configuration. Our goal is to find a con-
figuration that is faster and performs better than the default con-
figuration on as many datasets as possible, while also minimizing
the number of datasets where it performs worse.

More information and details are available in section S1 of the
Supplementary Materials.

Performance test of GADMA2 engines

Four engines supported by GADMA?2 (9adi, moments, momi2, mo-
mentsLD) are compared on 2 simulated datasets of fruit fly pop-
ulations and orangutan species. For each dataset, we test several
models of the demographic history. The first 2 models are based on
the ground-truth history used in the simulations but differ in the
presence of migration. Then we infer parameters for 2 structure
models with and without migration using the GADMA? feature
for automatic demographic inference. For the orangutan dataset,
3 additional models with pulse migrations are analyzed. The per-
formance of all 4 engines is compared, but momi2 engine is not
tested for models with continuous migration as it does not sup-
port it. We run GADMA? inference 8 times for each engine and
model. Parameters of the history with the best log-likelihood are
reported. Mutation and recombination rates for demographic in-
ference are taken the same as in the data simulation. Their values
are available in the Datasets section.

Using GADMA? engines, we find and compare parameters for
4 models of D. melanogaster demographic history (Supplementary
Table S5). Model DROS-NOMIG is an isolation model with instan-
taneous size change of the African population followed by sepa-
ration of the European population, which experiences 2 epochs of
constant sizes. Population sizes during these epochs are not de-
pendent on each other. Model DROS-MIG describes the scenario
identical to DROS-NOMIG but includes continuous asymmetric
migration between populations from their divergence until pres-
ence. Both models DROS-NOMIG and DROS-MIG align with the
original isolation history used for data simulation. Lastly, we test
2 models with (DROS-STRUCT-MIG) and without (DROS-STRUCT-
NOMIG) migration for structure (2, 1). This notation means a
model consisting of 2 epochs before the ancestral population split
followed by divergence and 1 epoch for each of the 2 subpopula-
tions. More details on model structure specification can be found
in Noskova et al. [16]. By their definition, these structure mod-
els are misspecified due to simplification of the European pop-
ulation’s history: a 2-epoch scenario of the European population
is approximated by 1 epoch with constant size, linear change, or
exponential change.

We analyze engines’ performance on the orangutan dataset for
7 demographic models (Supplementary Table S13). Model ORAN-
NOMIG is isolation with the ancestral population split followed
by the exponential size changes of the Sumatran and Bornean
orangutans. Model ORAN-MIG aligns with the history used in data
simulation and describes an isolation-with-migration with the an-
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cestral population split followed by the exponential size changes
of the Sumatran and Bornean orangutans. An additional 2 mod-
els with structure (1, 1) without (ORAN-STRUCT-NOMIG) and with
continuous migration (ORAN-STRUCT-MIG) are included in the
analysis. We note that the original history contains gene flow and
can be correctly estimated using ORAN-MIG and ORAN-STRUCT-
MIG models.

In order to overcome momi2’s limitation on continuous migra-
tions presented in the orangutan history, we tested the engine
for additional demographic scenarios with pulse migrations. A
different number of pulse migrations with equal rates are uni-
formly distributed within the epoch between the present time
and species divergence time. ORAN-NOMIG and ORAN-STRUCT-
NOMIG models are compared with 3 additional demographic
models: (i) with 1 pulse migration (ORAN-PULSE1), (ii) with 3
pulse migrations (ORAN-PULSE3), and (iii) with 7 pulse migra-
tions (ORAN-PULSE?).

Inference of inbreeding coefficients

We perform demographic inference with GADMA? using the data
of the American pumas (P. concolor) and domesticated cabbage (B.
oleracea var. capitata) from Blischak et al. [22]. For each dataset, pa-
rameters of 2 demographic models are inferred: (i) model from the
original study without inbreeding and (ii) model from the orig-
inal study with inbreeding. Each demographic inference is run
100 times, and the history with the highest log-likelihood value
is selected. Two result histories are compared with the likelihood
ratio test [42] to investigate which history best fits the data.

First, we use the same parameter bounds to repeat the demo-
graphic inference from Blischak et al. [22] with GADMA?2. We com-
pare the results of 100 runs of GADMA?2 with the same number
of results received using 9adi’s optimization techniques. Then we
perform another round of demographic inference with GADMA?2
using wider bounds of parameters.

Performance of GADMA? is compared with performance of 2
optimization techniques from 9adi within the same setup as in
Blischak et al. [22]. We first reproduce 100 launches of a single
9adi’s optimization as they were conducted in the original study
and measure the average number of evaluations and time of ex-
ecution. Next, we run 9adi’s optimization with restarts, meaning
that the optimization is restarted multiple times for each run and
the best log-likelihood parameters are considered as the result. In
order to balance computational costs, number of restarts is deter-
mined to match the average number of evaluations of GADMA2.
Notably, if average 9adi’s single optimization run requires X like-
lihood evaluations and the average GADMA?2 run involves Y eval-
uations, we compare the GADMA?2 run with the run of 9adi op-
timization with [%] restarts. We consider the number of evalu-
ations for comparison of computational costs. It is a more reli-
able metric than the time of execution, as it is not affected by the
specific hardware or parameter values used during optimization.
Used optimization techniques from 9adi require initial estimation
of parameters, which can be done by sampling from a wide range
of distributions. To ensure correct comparison, we use distribution
from the GADMA? initial design to perform this initialization.

We report and compare the mean, the standard deviation, and
the best value of log-likelihood for 100 run repeats of GADMA?2, of
a single 9adi’'s optimization, and of the 9adi’s optimization with
restarts. The optimization methods used for 9adi runs are the
BFGS algorithm [43-46] for the American puma data and the
BOBYQA method [47] for the domesticated cabbage data, as de-
scribed in Blischak et al. [22].
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Mutation rates, generation times, and sequence lengths for pa-
rameter translation were taken from Blischak et al. [22]. Demo-
graphic parameters for P. concolor are translated from the genetic
to real units using a mutation rate of u = 2.2 x 107%, a generation
time of 3 years, and a sequence length of 2,564,692,624 bp [32].
In the case of B. oleracea var. capitata, population demographic pa-
rameters are translated using a mutation rate of u = 1.5 x 107%, a
generation time of 1 year, and a sequence length 0f 411,560,319 bp.

The Godambe information matrix approach [42] was used for
evaluation of the confidence intervals (CIs) in the original study
[22]. This approach requires step size e to estimate parameters’
uncertainty. The value of step size can influence the stability of
Godambe approximation, and several values should be tested to
confirm consistent results between them. As in Blischak et al. [22,]
we estimate and compare uncertainties across a range of step
sizes: 1072 — 10~ by factors of 10. Reported confidence intervals
for the final histories are estimated on 100 bootstrapped AFS data
from the original study using the Godambe information matrix
with a step size equal to € = 10~2 [42]. The scripts and data used
for CI evaluation are taken from the repository [35] of Blischak
etal. [22].

Results and Discussion

Updated genetic algorithm

The genetic algorithm in GADMA?2 is improved by the hyperpa-
rameter optimization implemented in SMAC software [37, 38].
Ten hyperparameters (Table 1) of the genetic algorithm were op-
timized during the first optimization attempt. SMAC performed
13,900 runs of the genetic algorithm and tested 2,222 different
hyperparameter configurations. This process took 2 weeks of con-
tinuous computations on cluster. However, SMAC failed to find a
better solution than the default one. We assume that such behav-
ior may be caused by the presence of 2 discrete hyperparameters
in the configuration. These hyperparameters are fixed to 5 spe-
cific combinations of the domain values during the next attempts
of SMAC-based optimization of the remaining continuous hyper-
parameters.

As a result, we perform 6 attempts of hyperparameter opti-
mization for different configurations of GADMA?2, and the result
configurations are presented in Table 1. For each of these new con-
figurations, we manually evaluate the SMAC scores using 128 in-
dependent runs for each dataset and engine (moments, 9adi, and
momi2). They can be found in Supplementary Table S2 for the mo-
ments engine, Supplementary Table S3 for the 9adi engine, and
Supplementary Table S4 for the momi2 engine. The costs and re-
sults for 9adi are very similar to those for moments, supporting
the idea that 9adi and moments engines have very similar perfor-
mance. Based on the obtained SMAC scores, the attempt 3 con-
figuration is the best for moments and momi2 engines and second
best for the 9adi engine. However, we do not rely solely on the
mean SMAC score as a selection criterion for these new configu-
rations. This is because during SMAC runs, the genetic algorithm
was stopped earlier, and its full run performance may be different.
Additionally, log-likelihoods between test datasets and between
engines have different scales, making direct comparison difficult.

To address this problem, we determine the best new config-
uration based on the performance of 128 full genetic algorithm
runs using moments and momi2 engines. For each configuration,
we measure the average speedup and indicate whether or not the
resultlikelihood is better than for the default configuration. We do
not perform the full runs for the 9adi engine due to high computa-
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tional costs and its similarity to the moments engine. The boxplots
of log-likelihood values and the required number of evaluations
are presented in Supplementary Fig. S4 for the moments engine
and Supplementary Fig. S10 for the momi2 engine. The conver-
gence plots of a genetic algorithm with different configurations on
training and test datasets are presented in Supplementary Figs. S2
and S3 for themoments engine, Supplementary Figs. S6 and S7 for
the 9adi engine, and Supplementary Figs. S8 and S9 for the momi2
engine. The dataset counts for which new configurations demon-
strate better, worse, and incomparable performance comparing
to the default configuration are presented in Supplementary Fig.
S5 for the moments engine and in Supplementary Fig. S11 for the
momi2 engine.

On most datasets, all new configurations require a smaller
number of evaluations than the default genetic algorithm (Sup-
plementary Figs. S4 and S10). There is only 1 dataset, 2_Exp-
NoMig 5 Sim (moments engine), for which the default configura-
tion performs faster than all new configurations. In general, the
configurations from attempts 3, 5, and 6 are the fastest. However,
their log-likelihoods are worse than the default configuration on
most datasets (Supplementary Figs. S5 and S11). Configurations
from attempts 2 and 4 demonstrate best performance in terms of
resulting likelihoods among new configurations. Moreover, the ge-
netic algorithm with hyperparameters from attempt 2 has better
log-likelihood results for the moments engine while the configura-
tion from attempt 4 has better performance for the momi2 engine.
Since the hyperparameter optimization used the moments engine,
we choose the configuration from attempt 2 for the genetic al-
gorithm in GADMA2. Figure 3 summarizes the improvement ob-
tained by GADMA? with the new hyperparameters as compared
to the initial version. The new configuration saves around 10%
of evaluations and provides better results on average compared
to the default genetic algorithm. Some examples of the conver-
gence plots that compare the previous version of the genetic al-
gorithm and the new version of genetic algorithm are presented in
Fig. 4.

Flexible structure model

Automatic demographic model construction is a central feature
of GADMA. It replaces the fully manual choice of a model with
a model structure specification. Traditionally, demographic mod-
els only have continuous parameters. Demographic structures, on
the other hand, define the number of epochs before, after, and be-
tween population splitting events and assign a discrete variable
representing population dynamics type to each epoch. GADMA
optimizes over these discrete variables alongside with the usual
continuous ones, examining what would be a multitude of mod-
els in the traditional sense. GADMA? gives the user more control
over the search space in this setting.

Migration rates

One of the existing controls over model parameters is the oppor-
tunity to disable all migration events and to infer demographic
history without any gene flow. GADMA2 now includes a new con-
trol handle to make migrations symmetric. Additionally, it al-
lows for specific migrations to be disabled by setting up migration
masks.

Selection and dominance rates

Both of the initially supported likelihood engines included in
GADMA, 9adi, and moments are able to infer selection and
dominance rates. This inference approach, first presented in
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Figure 3: Performance comparison of the initial GADMA and GADMA?2
with new hyperparameters. Bar size illustrates the average speedup of
GADMAZ2, defined as the fraction of log-likelihood evaluations saved by
the new version for each dataset. Blue dashed line demonstrates the
average fraction of saved evaluations across all datasets. The bars’
hatching patterns indicate the improvement of the result log-likelihood
based on median and quartiles. GADMA2 with new hyperparameters
attains the average speedup of 10% and provides better results on
average compared to the default configuration.

Williamson et al. [48], assumes a single selection rate for the entire
population while real genetic data could consist of regions with
different rates. Despite this simplification, such inference can pro-
vide useful estimations of selection. The first version of GADMA
lacked the function to make these inferences, and we have added
these in the new version. GADMA?2 enables the approximation of
selection rates and dominance coefficients for automatically con-
structed demographic models.

Population size dynamics

GADMA? provides additional flexibility for population size esti-
mation during model construction. Previously, demographic pa-
rameters such as functions of population size changes were esti-
mated within a fixed set of 3 possible dynamics: constant, linear,
or exponential change. Now, the list of available population size
dynamics in GADMA?2 can be appointed to any subset of 3 basic
functions. Thus, for example, linear size change can be excluded
from the demographic inference if only constant and exponential
dynamics are applicable, like in the case of the momi2 engine.

Inbreeding coefficients

Since the publication of the first version of GADMA, the supported
likelihood engines were also upgraded. GADMA? follows these
changes and includes inference of inbreeding coefficients that
were implemented in dadi [22]. Using this new feature included
in 9adi, we demonstrate that GADMA?2 provides better and more
stable results for inference of the demographic models obtained
from data for the puma and cabbage reported by Blischak et al.
[22] (Supplementary Tables S21, S22, S26, and S27).

Data formats

Another improvement of 9adi and moments is the ability to build
an AFS dataset directly from a VCF file. Before this feature was
implemented, this had to be done either manually or using an-
other software like easySFS [49]. GADMA? is able to read data di-
rectly from a VCF file and downsize, exclude populations from, or
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Figure 4: Example convergence plots for the default genetic algorithm
configuration from the initial version of GADMA (red) and configuration
obtained during attempt 2 of hyperparameter optimization with SMAC
(green) on 2 datasets: (a) training dataset 2_DivMig 5 Simand (b) test
dataset 3_DivMig 8_Sim. For each configuration, 128 independent
optimization runs were performed. Solid lines correspond to median
convergence over 128 run,s and shadowed areas are ranges between the
first (0.25) and third (0.75) quartiles. The vertical dashed black line refers
to the number of evaluations used to stop a genetic algorithm in SMAC.

build a folded AFS automatically. Such a feature allows broader
and more convenient usage of GADMA2.

New likelihood engines

In addition to dadi and moments, GADMA?2 now includes 2 new like-
lihood engines: momi2 [10] and momentsLD [14, 15]. Thus, 4 engines
are provided in the common interface of GADMA2. Both dadi and
moments engines are based on the Wright-Fisher diffusion and use
allele frequency spectrum statistics for demographic inference.

Momi2 implements a structured coalescent-backward-in-time
stochastic process that is dual to the Wright-Fisher diffusion yet
scales well to a large number of populations. It also uses AFS data
as daoil and moments but is computationally faster and can handle
up to 10 populations. However, momi2 does not support continu-
ous migration and linear change of population size.

Even though the allele frequency spectrum is one of the most
popular statistics for demographic inference, it has limitations on
how informative it can be [50]. The software moments has a sub-
module momentsLD dedicated to demographic inference using LD
statistics. In general, low-order 2-locus LD statistics are used in
momentsLD. A new likelihood engine using momentsLD is the first
engine in GADMA that does not use AFS-based statistics.

Overall, GADMA2 now provides a choice of 4 likelihood engines,
and we encourage the community to extend this list.

A new engine for demographic history
representation

During demographic inference, GADMA provides different textual
and visual representations of the current best demographic his-
tory, such as generated Python code for all available likelihood en-
gines or picture with visualized demographic history. Recently, a
new Python package named demes [51] appeared to allow standard
human-readable descriptions of demographic histories. GADMA2
includes demes as an engine to generate native descriptions and
plots of demographic histories, which was only possible before us-
ing the moments or momi2 engine. Figure 2 shows the examples of
visual representations of demographic history using demes.

Performance comparison of GADMA2 engines

We compare 4 likelihood engines supported by GADMA2 on 2
simulated datasets of fruit flies and orangutans. Several demo-
graphic models are used. Their description is provided in the
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Performance test of GADMA? engines section of Materials and
Methods.

The simulated parameter values of D. melanogaster population
history and their estimations inferred by engines in GADMA?2 are
presented in Table 2 and Supplementary Tables S7, S8, and S9
for DROS-NOMIG, DROS-MIG, DROS-STRUCT-NOMIG. and DROS-
STRUCT-MIG models correspondingly. The mean time of 1 log-
likelihood evaluation and the mean number of evaluations aver-
aged over inference runs are reported in Supplementary Tables
S9 and S10.

Estimations of orangutan history model parameters and
their ground-truth values are available in Supplementary Ta-
bles S14, S15, and S16 and Table 3 for ORAN-NOMIG, ORAN-MIG,
ORAN-STRUCT-NOMIG, and ORAN-STRUCT-MIG models, respec-
tively. The results of parameter estimations using momi2 for mod-
elswith 0, 1,3, and 7 pulse migrations are presented in Table 4. The
average time of 1 log-likelihood evaluation and the mean number
of evaluations for used models and engines are reported in Sup-
plementary Tables S19 and S20.

Below we present our general conclusions about the results.
A more detailed comparison is available in section S2 of the Sup-
plementary Materials.

Fruit fly demographic history

Parameter values for models DROS-NOMIG and DROS-MIG that
align with the ground truth are inferred accurately by all tested
likelihood engines. Best estimations are obtained for the DROS-
NOMIG model using the momi2 engine. The bottleneck Euro-
pean population size is approximated most accurately by the
momentsLD engine. Result histories for model DROS-MIG have
worse values of log-likelihood than histories for the DROS-NOMIG
model. Since DROS-NOMIG and DROS-MIG models are nested,
this indicates optimization failure. Nevertheless, they are able
to catch general history and low migration rates. Thus, based
on these results, it is possible to assume population isolation
and use further models without migrations for more accurate
estimations.

We observe interesting results for the misspecified models with
structure (2, 1). In the case of the DROS-STRUCT-NOMIG model,
the ground-truth history of D. melanogaster is accurately approxi-
mated by moments and momentsLD engines only. The 2-epoch his-
tory of the European population is approximated by exponen-
tial growth with a rate that differs between engines (Supplemen-
tary Fig. S12). The approximation made using the moments en-
gine aligns more closely with the actual history in terms of the
mean population size and coalescent time, while the approxima-
tion from momentsLD is more accurate in terms of harmonic mean
population size (section S2.1.1 of the Supplementary Materials).
We note that the momentsLD engine also is able to provide similar
history for the model DROS-STRUCT-MIG with migrations. How-
ever, 9adi, momi2, and moments for both models are hindered by
the severe local optimum and were not able to achieve a global
solution within 8 GADMA?2 runs. The alternative history is able to
catch the European population history and low migration rates,
yet it does not reflect the instantaneous expansion of the ances-
tral population, and the parameter value for the African popula-
tion size hits the upper bound. Using models with African popu-
lation size fixed to the ancestral population size after expansion
helps to overcome the local optimum and achieve history similar
to the ground truth (section S2.1.2 of the Supplementary Materi-
als, Supplementary Tables S11 and S12).
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Table 2: The demographic parameters of Drosophila melanogaster history without migration (DROS-NOMIG model) inferred with different
engines in GADMAZ2. Ground truth includes the parameter values from Li and Stephan [27] used in simulation powered by stdpopsim [25].
Log-likelihood values are not comparable between different engines

9adi moments momi2 momentsLD
Log-likelihood Ground truth —2,808 -1,101 —53,489,812 -268
Parameter
Nane 1,720,600 1,598,851 1,580,074 1,724,622 1,243,096
Narr 8,603,000 8,421,135 7,949,903 8,679,000 7,963,770
NEuro 2,200 21,999 16,158 439 2,013
Nreup 1,075,000 1,082,115 1,008,276 1,008,970 1,102,340
Tarr (gen.) 600,000 603,933 560,015 597,487 715,948
Ty (gen.) 158,000 173,658 162,631 159,205 153,248
Teup (gen.) 154,600 137,587 136,450 158,503 149,942

Nane, size of the ancestral population; Narg, size of the African population after expansion; Neypo, European bottleneck population size after divergence; Neyp, modern
size of the European population; Targ, time of African size expansion; Ty, time of divergence; Tryp, time of European expansion.

Table 3: The demographic parameters of orangutan history with migration for structure (1, 1) (ORAN-STRUCT-MIG model) inferred with
different engines in GADMA?2. Ground truth includes the simulated parameter values that were obtained from the original study by
Locke et al. [30]. Momi2 engine was excluded as it does not support continuous migrations. Log-likelihood values are not comparable
between different engines

9adi moments momentsLD
Log-likelihood Ground truth -1,220 -1,106 -53
Parameters
Nne 17,934 17,925 17,854 17,685
Nior_syit 10,617 10,432 10,498 10,529
Nin_syi 7,317 7,492 7,355 7,155
Ngor 8,805 9,282exF 8,892¢¢F 8,592%F
Ny 37,6616 39,343¢P 37,4438 36,7408
Mpor — sum( x 1075) 0.66 0.67 0.67 0.69
Msum — sor( x 1075) 1.10 1.07 1.09 1.13
Tepie (gen.) 20,157 20,812 20,183 19,869

Nane, size of the ancestral population; Ng gy, size of Pongo pygmaeus at split; Nym spiit, size of Pongo abelii at split; Ng,,, modern size of Pongo pygmaeus; Ns,,m, modern
size of Pongo abelii; Mg,y — sym, igration rate from Pongo pygmaeus to Pongo abelii; Msym, — 5or, Migration rate from Pongo abelii to Pongo pygmaeus; Tyt time of divergence.
“PExponential growth.

Table 4: The demographic parameters of orangutan histories without migration and with pulse migrations inferred using the momi2
engine in GADMA?2. In ORAN-PULSE* models, the time interval after divergence is divided into equal parts, and pulse migrations are
integrated between them. The inferred parameters show convergence to true values with an increase in pulse migration number. Ground
truth includes the simulated parameter values obtained from the original study by Locke et al. [30]

Model ORAN-

Ground truth NOMIG STRUCT-NOMIG PULSE1 PULSE3 PULSE7
Number of pulse migrations 0 (continuous) 0 0 1 3 7
Log-likelihood —48,541,453 —48,545,934 —48,437,315 —48,391,684 —48,377,617
Parameters
Nane 17,934 19,331 19,086 19,220 18,461 17,997
Nor_spli 10,617 6,187 8,453 8,731 8,715 10,086
Neum_spiit 7,317 7,719 11,668 4,165 5,412 6,409
Naor 8,805 10,663 8,453 9,631 9,640 8,768
Nsum 37,661 54,184 49,595 59,929 43,123 38,030
MBor — Sum 0.66 x 107> 0 0 0.065 0.057 0.025
Msum — Bor 1.10 x 10~° 0 0 0.206 0.084 0.036
Tepiie (geN.) 20,157 11,270 11,668 16,211 20,086 20,809

Nane, size of ancestral population; Ny spiit, size of Pongo pygmaeus at split; Ny _spiit, Size of Pongo abelii at split; Ny, size of Pongo pygmaeus after exponential decline;
Nsum, size of Pongo abelii after exponential size change; mgo, — sym, migration rate from Pongo pygmaeus to Pongo abelil; Msym — por, Migration rate from Pongo abelii to
Pongo pygmaeus; Tqpjit, time of divergence in generations.

Orangutan demographic history cal for 9adi, moments, and momi2, which are AFS-based engines.
In the case of the orangutan simulated dataset, all 4 engines pro- ~ Estimations for the modern sizes of populations are greater than

vide similar demographic histories for the ORAN-NOMIG model the actual values used for the simulation. Moreover, the time of
without migrations. The predicted parameters are almost identi- ~ divergence is estimated to be lower: ~12,000 vs. ground truth
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of ~20,000. These discrepancies between predicted and simu-
lated parameter values for the model ORAN-NOMIG could be ex-
plained by the fact that the model is oversimplified and lacks
migration.

Model ORAN-MIG aligns correctly with the history used for data
simulation. All tested engines provide estimations close to the
simulated parameter values for the ORAN-MIG model.

The result demographic parameters for the ORAN-STRUCT-
NOMIG model are close to the estimations obtained for the ORAN-
NOMIG model. The population size dynamics are correctly in-
ferred to be exponential for 9adi and momentsLD engines. However,
momi2 and moments predict the constant size of the Bornean pop-
ulation. Although constant size approximates the Bornean popu-
lation history relatively well, we demonstrate that our result is a
consequence of the following model restriction. The model ORAN-
STRUCT-NOMIG obliges the sum of Sumatran and Bornean pop-
ulation sizes after divergence to equal the ancestral population
size. Ground-truth history follows this rule, but it is not fulfilled
by the estimations inferred for the ORAN-NOMIG model. We ad-
ditionally test the ORAN-NOMIG model with the same restriction
on population sizes for momi2 and moments engines. The best ob-
tained scenarios have a worse log-likelihood value than histories
with constant size of the Bornean population obtained for the
ORAN-STRUCT-NOMIG model (section S2.2 of the Supplementary
Materials).

Moreover, we remove the restriction on population sizes for the
ORAN-STRUCT-NOMIG model and infer parameters for the new
modified model using moments and momi2 engines. The history re-
ceived for momi2 engine is similar to those obtained for the ORAN-
NOMIG model, and the history of Bornean population is estimated
correctly by the exponential dynamic. However, even though the
moments engine also assumes exponential size change for the
Bornean population, it approximates the exponential growth of
Sumatran population size by a linear dynamic. Yet the history
with linear approximation is similar to other histories obtained
by moments for models ORAN-NOMIG and ORAN-STRUCT-NOMIG
without migration. Furthermore, we ensure that such a model
without the restriction but with linear size change is considered
better than the result history for the ORAN-NOMIG model not
only by the moments engine but also by 9adi and momentsLD (sec-
tion S2.2 of the Supplementary Materials). Thus, we have observed
that model misspecifications like absence of migrations may lead
to confusion between exponential and linear dynamics, but the
results will still reflect the ground-truth history.

The original demographic history of orangutan species used for
data simulation is accurately reconstructed by daai, moments, and
momentsLD engines within the ORAN-STRUCT-MIG model. Popu-
lation size dynamics are inferred to be exponential for all tested
engines. The parameters and values of log-likelihood are similar
to the results for the ORAN-MIG model.

Finally, we analyze momi2 engine performance for additional
model ORAN-PULSE* with pulse events (Table 4). Pulse migra-
tion rates inferred by momi2 differ significantly from continuous
rates used in the simulation. However, it is important to note that
pulse migration rates cannot be directly compared to continu-
ous migration rates. As the number of pulse events increases,
we expect the rates to decrease, and it is supported by our re-
sults. For example, the migration rate from Bornean orangutans
to Sumatran orangutans (Mge — sum) i inferred to be equal to 0.65
for model ORAN-PULSE1 with 1 pulse migration, 0.057 for model
ORAN-PULSE3 with 3 pulses, and 0.025 for model ORAN-PULSE7
with 7 pulse events. It is crucial that other parameters converge
to the simulated parameter values with an increased number
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of pulse events. Along these lines, population divergence time is
estimated to be ~11,000 generations for models ORAN-NOMIG
and ORAN-STRUCT-NOMIG, ~16,000 generations for the model
ORAN-PULSE1, and ~20,000 for models ORAN-PULSE3 and ORAN-
PULSE7. The latter is close to the value of 20,157 used in the sim-
ulation. Parameter estimations for model ORAN-PULSE7 with 7
pulse migrations are the most accurate among tested models. We
assume the increase in pulse events number will lead to more
accurate estimations yet require more computational resources.
Thus, continuous migration is not supported in the momi2 engine
but, to some degree, could be replaced by several pulse migration
events.

Usage case: inference of inbreeding coefficients

We use GADMA? to reproduce demographic inference from Blis-
chak et al. [22] for datasets of American pumas (P. concolor) and do-
mesticated cabbage (B. oleracea var. capitata). Blischak et al. [22] per-
formed the demographic inference for 2 models without (model
1) and with inbreeding (model 2) using 9adi’s optimization ap-
proaches.

First, we run GADMA?2 with the 9adi engine and the same pa-
rameter bounds as in Blischak et al. [22] and compare the results
of 100 repeats with the results obtained by dadi’'s optimization
techniques. The result statistics, such as mean number of eval-
uations, mean execution time, and mean and best values of log-
likelihood, are presented in Supplementary Tables S21 and S22 for
American pumas and Supplementary Tables 526 and S27 for do-
mesticated cabbage. They demonstrate that on average, a single
GADMAZ? run provides better and more stable results than a single
run of 9aai’s optimization within 100 repeats. However, when op-
timization from 9adi is restarted several times in order to match
the computational costs of GADMAZ2, the results are not so con-
sistent. In case of American puma populations, final average and
best log-likelihood values for GADMA?2 are better than for 9adi’s
optimization with restarts. For domesticated cabbage inference,
optimization from 9adi with restarts attains better average results
than GADMA2. Yet number of restarts required to cover GADMA?2
computational costs differs a lot between datasets and models
and is always unknown in practice.

Several parameters of the result demographic histories ob-
tained during first GADMA? inference for both datasets received
values close to their upper or lower bounds. In order to overcome
this limitation, we perform another inference with wider bounds
for parameter values and observe more reliable demographic pa-
rameters. The final values of the parameters and their CIs are pre-
sented in Supplementary Table S25 for American pumas and Sup-
plementary Table S30 for domesticated cabbage. Uncertainty es-
timates for CI evaluation are consistent across different step sizes
and are presented in Supplementary Tables S23 and 524 for Amer-
ican pumas and in Supplementary Tables S28 and S29 for domes-
ticated cabbage. The visual representations of demographic his-
tories using demes can be found in Fig. 5 for American pumas and
in Fig. 6 for domesticated cabbage.

American puma demographic history

The best demographic histories obtained with GADMA2 have bet-
ter values of log-likelihood (—452,492.70 vs. —453,003.05 for model
1 and —316,115.56 vs. —318,058.08 for model 2) than those re-
ported in Blischak et al. [22]. Similar values of population sizes
are obtained except for the size of the Florida population, which
is estimated to be 860 and 374 individuals for model 1 and model
2, respectively, compared to the 1,200 and 1,600 individuals esti-
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Figure 5: Demographic histories for Texas and Florida populations of
American puma inferred with GADMA?2. Figures are generated with the
demes package [51]. Time is presented on a log scale.
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Figure 6: Demographic histories for a single population of domesticated
cabbage inferred with GADMA?. Figures are generated with the demes
package. In both models, the time of the most recent epoch is estimated
to be small.

mated by Blischak et al. [22]. Time of divergence is estimated as
5,800 years ago for model 1 and as 1,800 for model 2. Inbreeding
coefficients for model 2 are reported to be slightly higher than for
the same model in Blischak et al. [22]: 0.453 for the Texas popula-
tion and 0.628 for the Florida population. The Godambe-adjusted
likelihood ratio test (LRT) statistic is 2,634.18 (P = ~0.0; Coffman
et al. [42]), indicating that the model with inbreeding better de-
scribes data.

Domesticated cabbage demographic history

The best demographic histories obtained with GADMA?2 for the
domesticated cabbage population have better log-likelihood val-
ues (—24,137.34 vs. —24,330.40 for model 1 and —4,267.32 vs.
—4,281.14 for model 2) than those received in Blischak et al. [22].
Values for the population sizes in the first and second epochs are
inferred similar to the results from Blischak et al. [22]. However,
the population size estimation for the most recent epoch in our re-
sults is lower (10 vs. 592 individuals) for model 1 without inbreed-
ing and higher (174,960,000 vs. 215,000 individuals) for model 2
with inbreeding than estimates obtained by 9adi in [22]. The time
duration of the epoch is also smaller for both models than esti-
mated previously. In the case of model 1, the time parameter is
very close to zero. The likelihood ratio test showed that the model
with inbreeding better describes the data than the model without
inbreeding (LRT statistic = 126.59, P = ~0.0; Coffman et al. [42]).

Conclusions

GADMA? is an extension of GADMA. It features an improved ge-
netic algorithm, a more flexible automatic model construction
setup, and 2 additional demographic likelihood engines. We show-
cased GADMA? by comparing different likelihood engines for 2
simulated datasets with various demographic models, includ-
ing misspecified ones. Furthermore, we applied GADMA?2 to infer

demographic histories for 2 empirical datasets of inbred species,
reporting updated parameters.

To improve the genetic algorithm, we ran hyperparameter op-
timization powered by SMAC. We observed that discrete hyper-
parameters might hinder hyperparameter optimization, requir-
ing much more iterations. Because of this, we manually picked
5 combinations of the discrete hyperparameters, running SMAC-
based optimization of the remaining continuous ones for each
fixed combination. We compared the set of optimal solutions on
various datasets for 3 AFS-based likelihood engines of GADMA2:
0adi, moments, and momi2. We included the configuration that
performed best when averaged across all likelihood engines as
GADMA?2’s new genetic algorithm. It is worth noting, however, that
there was no one configuration that performed best for all of the
likelihood engines simultaneously. We thus propose introducing
engine-specific genetic algorithm configurations as a valuable di-
rection for future work. Another prospective direction is popula-
tion count-specific configurations (i.e., making the optimization of
GADMA different for 1, 2, and 3 populations). An important point
here is that log-likelihoods for different datasets with a fixed pop-
ulation count are more comparable to each other. This could help
SMAC’s heuristic target function better reflect the real multiobjec-
tive goal and thus improve its hyperparameter optimization per-
formance.

GADMA's automatic model construction setup was improved
to allow forbidding specific migrations or making them symmet-
ric, as well as restricting the admissible types of population size
dynamics. Moreover, inference of selection and inbreeding coeffi-
cients was made possible in GADMA?2. We note that the approach
included in GADMAZ2 for inference of the selection and dominance
rates is limited and can provide only simplified estimations. In
order to perform more accurate inference of selection, other ap-
proaches should be used [52].

Two new demographic likelihood engines, momi2 and mo-
mentsLD, were incorporated into GADMA?2. The former is based
on a different mathematical model than 9adi and moments and
is computationally faster than them, but it does not support con-
tinuous migrations and linear population size growth. The latter
is the first engine in GADMA?2 that does not use allele frequency
spectrum data for demographic inference and relies on linkage
disequilibrium statistics instead. Furthermore, the new package
demes was incorporated into GADMA? as a representation engine
providing textual and visual descriptions of demographic histo-
ries.

We analyzed the accuracy of GADMA?2’s demographic likeli-
hood engines on 2 simulated datasets: the dataset of fruit fly
populations and the dataset of orangutan species. We used dif-
ferent demographic models, including models with structures.
Some of these models align with the ground truth, while some are
misspecified due to various simplifications. Similar performance
was observed over all engines for the models that align with the
ground truth. In this case, inferred demographic histories were
close to the ground truth, and the types of population size dy-
namics were correctly recovered for models with structures.

Demographic inference with the misspecified models demon-
strated interesting phenomena. For the misspecified models with
structure and the fruit fly dataset, all the AFS-based engines were
stuck at the same local optimum. However, the resulting demo-
graphic histories were still able to give some insights about the
studied populations. The new LD-based engine momentsLD per-
formed considerably better than the AFS-based engines. For the
orangutan dataset, both the AFS-based engines and momentsLD
performed well. All slight discrepancies between estimated and
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ground-truth values are consequences of models’ restrictions
and misspecifications. It was found that sometimes exponential
growth of population size could be misconstrued as linear growth
with a similar rate for misspecified models that do not include
migration events. Although the momi2 engine does not support
continuous migrations required to accurately model the ground
truth, it performs well in approximating these with a number of
pulse migrations. However, this approach is limited because larger
numbers of pulse migrations increase computation time.

GADMA?2? greatly simplifies performing such comparisons, the
in-depth study of which seems a prospective work direction.

We reproduced the demographic inference setup of Blischak
et al. [22] for the datasets of American pumas and domesticated
cabbage. We compared performance of the fully 9adi-based infer-
ence to GADMA2. GADMA? attained higher log-likelihoods with
lower variance across different runs than a single 9adi optimiza-
tion. GADMAZ2’s run times, however, are considerably longer than
0adi’s, to the extent that 9adi’s optimization can sometimes yield
better results when restarted multiple times to match the com-
putational costs of GADMA?2. However, it may be difficult to deter-
mine the number of restarts needed, while GADMA2’s automatic
termination makes for a simpler and, arguably, more reliable user
experience.

Finally, we found updated parameters for models, both with
and without inbreeding, for the datasets of American pumas and
domesticated cabbage from Blischak et al. [22]. For each dataset,
the best demographic histories include inbreeding. Our results,
however, demonstrate very broad Cls for some model parameters.
The wide CIs for the population size of domesticated cabbage dur-
ing the most recent epoch can be explained by the fact that epoch
length was inferred to be small, and very recent events are diffi-
cult to investigate with the dadi engine. However, the same results
for the size of the Florida puma population and the population
divergence time are difficult to explain. We only tested the demo-
graphic models from Blischak et al. [22]; new models, however, can
be built based on our results.

GADMA? extends the GADMA that has already shown itself
as powerful and efficient software for the inference of complex
demographic histories from genetic data. With its new applica-
tion programming interface, GADMA?2 can be easily improved fur-
ther by integrating new likelihood engines, new optimization al-
gorithms, and automatic model construction routines.

Availability of Source Code and
Requirements

GADMA?2 is freely available from GitHub via the link https://gith
ub.com/ctlab/GADMA and can be easily installed via Pip or Bio-
Conda. Detailed documentation is located on the website [53]
and includes a user manual, ready-to-use examples, and a sec-
tion about the Application Programming Interface (API). API en-
ables an opportunity to use GADMA? as a Python package and
allows its optimization algorithms to be applied to any general
optimization problem. An example of such usage is demonstrated
for Rosenbrook function [54] optimization and is provided in the
documentation.

® Project name: GADMA

® Version: 2.0.0

® Project homepage: https://github.com/ctlab/GADMA
® Documentation: https://gadma.readthedocs.io

¢ RRID: RRID:SCR_017680

® biotoolsID: biotools:GADMA

GADMA? for demographic inference | 11

® Operating system(s): Platform independent

® Programming language: Python

® Other requirements: Python3.6 or higher, other requirements
are available within the documentation

® License: GNU GPL v3

Additional Files

Supplementary Fig. S1. The model of the demographic history
and naming convention of the example dataset from the deminf
data v1.0.0 package.

Supplementary Fig. S2. Convergence plots for 6 genetic algorithm
configurations using the moments engine on 4 training datasets: (1)
the default genetic algorithm from the initial version of GADMA
and (2-6) configurations obtained during attempts 2 to 6 of hy-
perparameter optimization with SMAC. The abscissa presents the
log-likelihood evaluation number; the ordinate refers to the dis-
tance to the optimal value of log-likelihood. Solid lines correspond
to median convergence over 128 runs and shadowed areas are
ranges between first (0.25) and third (0.75) quartiles. The vertical
dashed black line refers to the number of evaluations used to stop
a genetic algorithm in SMAC. The default configuration (red) and
2 configurations from attempt 2 (green) and attempt 6 (blue) were
compared in terms of convergence on a greater number of itera-
tions. The configuration from attempt 2 shows faster convergence
on first iterations, and the configuration from attempt 6 turns out
to have better convergence at the last iterations on 3 of 4 datasets.
Supplementary Fig. S3. Convergence plots for 6 genetic algorithm
configurations using the moments engine on 6 test datasets: (1) the
default genetic algorithm from the initial version of GADMA and
(2-6) configurations obtained during attempts 2 to 6 of hyperpa-
rameter optimization with SMAC. The default configuration (red)
and 2 configurations from attempt 2 (green) and attempt 6 (blue)
were compared in terms of convergence on a greater number of
iterations. The configuration from attempt 2 shows faster con-
vergence on first iterations, and the configuration from attempt
6 turns out to have better convergence at the last iterations on 2
of 6 datasets.

Supplementary Fig. S4. Boxplots of the eventual log-likelihoods
and number of evaluations required for full runs of the genetic
algorithm with 6 configurations using the moments engine. For
each dataset, 2 plots are presented: (1) the top plot shows distri-
bution of 128 resulting log-likelihood values; (2) the bottom plot
corresponds to the distribution of the evaluations’ number re-
quired for genetic algorithms to terminate. Orange line on boxplot
refers to the median value; green triangle demonstrates the mean
value.

Supplementary Fig. S5. For each dataset, the performance of the
new configurations from attempts 2 to 6 is categorized as better,
worse, or incomparable to the performance of the default config-
uration when using the moments engine. The histogram illustrates
the count of datasets falling into each category for each configu-
ration. Performance is considered better if both the median value
and both quartiles of log-likelihoods are higher than those of the
default configuration. Conversely, if both the median and quar-
tiles are lower, the dataset is categorized as worse. Otherwise, the
comparison is considered similar or undefined.

Supplementary Fig. S6. Convergence plots for 6 genetic algorithm
configurations using the 9adi engine on 4 training datasets: (1) the
default genetic algorithm from the initial version of GADMA and
(2-6) configurations obtained during attempts 2 to 6 of hyperpa-
rameter optimization with SMAC. The abscissa presents the log-
likelihood evaluation number; the ordinate refers to the distance
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to the optimal value of the log-likelihood. Solid lines correspond
to median convergence over 128 runs, and shadowed areas are
ranges between first (0.25) and third (0.75) quartiles. The vertical
dashed black line refers to the number of evaluations used to stop
a genetic algorithm in SMAC.

Supplementary Fig. S7. Convergence plots for 6 genetic algorithm
configurations on 6 test datasets: (1) the default genetic algorithm
from the initial version of GADMA (red) and (2-6) configurations
obtained during attempts 2 to 6 of hyperparameter optimization
with SMAC.

Supplementary Fig. S8. Convergence plots for 6 genetic algorithm
configurations using the momi2 engine on 4 training datasets: (1)
the default genetic algorithm from the initial version of GADMA
(red) and (2-6) configurations obtained during attempts 2 to 6 of
hyperparameter optimization with SMAC. The abscissa presents
the log-likelihood evaluation number; the ordinate refers to the
distance to the optimal value of log-likelihood. Solid lines corre-
spond to median convergence over 128 runs, and shadowed areas
are ranges between first (0.25) and third (0.75) quartiles. The ver-
tical dashed black line refers to the number of evaluations used
to stop a genetic algorithm in SMAC.

Supplementary Fig. S9. Convergence plots for 6 genetic algo-
rithm configurations on 4 test datasets: (1) default genetic algo-
rithm from the initial version of GADMA (red) and (2-6) config-
urations obtained during attempts 2 to 6 of hyperparameter op-
timization with SMAC. Two datasets (2_ButAllA 3 McC, 2_But-
SynB2_5 McC) were excluded as they are not supported by the
momi2 engine.

Supplementary Fig. S10. Boxplots of the eventual log-likelihoods
and number of evaluations required for full runs of the genetic
algorithm with 6 configurations using the momi2 engine. For each
dataset, 2 plots are presented: (1) the top plot shows distribution
of 128 resulting log-likelihood values; (2) the bottom plot corre-
sponds to the distribution of the evaluations’ number required for
genetic algorithms to terminate. Orange line on boxplot refers to
the median value; green triangle demonstrates the mean value.
Supplementary Fig. S11. For each dataset, the performance of the
new configurations from attempts 2 to 6 is categorized as better,
worse, or incomparable to the performance of the default config-
uration when using the momi2 engine. The histogram illustrates
the count of datasets falling into each category for each configu-
ration. Performance is considered better if both the median value
and both quartiles of log-likelihoods are higher than those of the
default configuration. Conversely, if both the median and quar-
tiles are lower, the dataset is categorized as worse. Otherwise, the
comparison is considered similar or undefined.

Supplementary Fig. S12. Comparison of the original demographic
history of Drosophila melanogaster and approximations for the
DROS-STRUCT-NOMIG model by moments and momentsLD engines.
Supplementary Table S1. Short descriptions of GADMA genetic
algorithm (GA) hyperparameters.

Supplementary Table S2. Mean log-likelihood values (128 runs)
for final configurations of 6 SMAC attempts on training and test
datasets. Genetic algorithm was stopped at the same number of
evaluations used in SMAC. Log-likelihood was evaluated with the
moments engine. Mean cost value on training datasets presented in
the table is SMAC score that was used by the SMAC intensification
procedure. For attempt 1, SMAC failed to find a better configura-
tion than the default one. Best mean values are marked bold.
Supplementary Table S3. Mean log-likelihood values (128 runs)
for final configurations of 6 SMAC attempts on training and test
datasets using the 9adi simulation engine. Genetic algorithm was
stopped at the same number of evaluations used in SMAC. Best

mean values are marked bold. Log-likelihood values and results
are similar to the moments engine.

Supplementary Table S4. Mean log-likelihood values (128 runs)
for final configurations of 6 SMAC attempts on training and test
datasets using the momi2 simulation engine. Genetic algorithm
was stopped at the same number of evaluations used in SMAC.
Two test datasets (2_ButAllA 3 McC, 2_ButSynB2 5 McC) were
excluded as they lacked sequence length required for the momi2
engine. Moreover, the momi2 engine does not support continuous
migrations, and size of ancestral population could not be inferred
implicitly as for dadi and moments. Thus, number of parameters
in datasets for momi2 differs from moments and 9adi. Best mean
values are marked bold.

Supplementary Table S5. Models of Drosophila melanogaster pop-
ulations’ history and GADMAZ2’s likelihood engines used for per-
formance comparison. If engine was used to infer model parame-
ters, then notation “+” is set between the engine and model; oth-
erwise, notation “~" is specified. Engine momi2 is not compared for
the models with migration as it does not support continuous mi-
grations.

Supplementary Table S6. The demographic parameters of
Drosophila melanogaster history with migration (DROS-MIG model)
inferred with different engines in GADMA2. Ground truth includes
the parameter values from the original study by Li and Stephan
(2006) used in simulation powered by stdpopsim (Adrion et al.,
2020). Engine momi2 is excluded as it does not support continu-
ous migrations. Log-likelihood values are not comparable between
different engines.

Supplementary Table S7. The demographic parameters of
Drosophila melanogaster history without migration for structure (2,
1) (DROS-STRUCT-NOMIG model) inferred with different engines
in GADMA2. Ground truth includes the parameter values from the
original study by Li and Stephan (2006) used in simulation pow-
ered by stdpopsim (Adrion et al., 2020). Log-likelihood values are
not comparable between different engines.

Supplementary Table S8. The demographic parameters of
Drosophila melanogaster history with migration for structure (2,
1) (DROS-STRUCT-MIG model) inferred with different engines in
GADMA?2. Ground truth includes the parameter values from the
original study by Li and Stephan (2006) used in simulation pow-
ered by stdpopsim (Adrion et al., 2020). Engine momi?2 is excluded
as it does not support continuous migrations. Log-likelihood val-
ues are not comparable between different engines.
Supplementary Table S9. Comparison of average times for log-
likelihood evaluation between used GADMA2’s likelihood engines
and models of Drosophila melanogaster history. For each model
and likelihood engine, mean value and standard deviation are re-
ported.

Supplementary Table S10. Mean number of log-likelihood
evaluations required for demographic inference averaged over
8 GADMA2 runs for each engine and model of Drosophila
melanogaster history.

Supplementary Table S11. The demographic parameters of
Drosophila melanogaster history without migration for structure (2,
1) and restriction on population sizes of ancestral and African
populations (DROS-STRUCT-NOMIG-AFR model) inferred with dif-
ferent AFS-based engines in GADMA?2. Ground truth includes the
parameter values from the original article by Li and Stephan
(2006) used in simulation powered by stdpopsim (Adrion et al.,
2020). Log-likelihood values are not comparable between differ-
ent engines.

Supplementary Table S12. The demographic parameters of
Drosophila melanogaster history without migration for structure (2,
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1) and restrictions on instantaneous expansion of ancestral pop-
ulation and on population sizes of ancestral and African popula-
tions (DROS-STRUCT-NOMIG-AFR-ANC model) inferred with dif-
ferent AFS-based engines in GADMA2. Ground truth includes the
parameter values from the original study by Li and Stephan (2006)
used in simulation powered by stdpopsim (Adrion et al., 2020).
Log-likelihood values are not comparable between different en-
gines.

Supplementary Table S13. Models of orangutan’s history and
GADMAZ2’s likelihood engines used for performance comparison.
If engine was used to infer model parameters, then notation “+”
is set between these engine and model; otherwise, notation “~”
is specified. Engine momi2 is not compared for the models with
migration as it does not support continuous migrations.
Supplementary Table S14. The demographic parameters of
orangutan history without migration (ORAN-NOMIG model) in-
ferred with different engines in GADMA?2. Ground truth includes
the simulated parameter values that were obtained from the orig-
inal study by Locke et al. (2011).

Supplementary Table S15. The demographic parameters of
orangutan history with migration (ORAN-MIG model) inferred
with different engines in GADMA2. Ground truth includes the
simulated parameter values that were obtained from the original
study by Locke et al. (2011). Momi2 engine was excluded as it does
not support continuous migrations.

Supplementary Table S16. The demographic parameters of
orangutan history without migration for structure (1, 1) (ORAN-
STRUCT-NOMIG model) inferred with different engines in
GADMA?2. Ground truth includes the simulated parameter values
that were obtained from the original study by Locke et al. (2011).
Log-likelihood values are not comparable between different en-
gines.

Supplementary Table S17. The demographic parameters of
orangutan history for several models without migrations inferred
using the moments engine in GADMA?2. Models differ by set of dy-
namics used for inference and by the restriction on population
sizes. Model follows the restriction (marked by +) when the sum of
Bornean and Sumatran population sizes is obliged to equal the an-
cestral population size before the split. Two histories are also pre-
sented in another table that are indicated in the last row. Ground
truth includes the simulated parameter values that were obtained
from the original study by Locke et al. (2011).

Supplementary Table S18. The demographic parameters of
orangutan history for models with linear size change of Suma-
tran population and without migrations inferred with different
engines in GADMAZ2. Ground truth includes the simulated param-
eter values that were obtained from the original study by Locke
et al. (2011). Momi2 engine was excluded as it does not support
linear size change. Log-likelihood values are not comparable be-
tween different engines.

Supplementary Table S19. Comparison of average times for log-
likelihood evaluation between used GADMA2’s likelihood engines
and models of orangutan history. For each model and likelihood
engine, mean value and standard deviation are reported.
Supplementary Table S20. Mean number of log-likelihood eval-
uations required for demographic inference averaged over 8
GADMA? runs for each engine and model of orangutan history.
Supplementary Table S21. Result statistics obtained from 100 re-
peats of 2 of 9adi’s optimization techniques and GADMA?2 in a case
of the demographic inference without inbreeding for the Ameri-
can Puma populations. The reported statistics include the mean
and standard deviation of the number of evaluations, CPU times,
and log-likelihoods. GADMA? is compared with 2 of 9adi’s opti-
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mization techniques: single optimization and optimization with
multiple restarts. In order to match the number of evaluations
with GADMA?2, the 9adi optimization with multiple restarts has
18 restarts. Additionally, results from Blischak et al. (2020) are in-
cluded, which were obtained using single dadi optimization with
different initialization process. BFGS optimization was used as an
optimization from 9adi. The results obtained from GADMA?2 are
highlighted in bold, as they achieved the best mean and best log-
likelihood values.

Supplementary Table S22. Result statistics obtained from 100 re-
peats of 2 of 9adi’'s optimization techniques and GADMA? in a
case of the demographic inference with inbreeding for the Amer-
ican Puma populations. The reported statistics include the mean
and standard deviation of the number of evaluations, CPU times,
and log-likelihoods. GADMA? is compared with 2 of 9adi’s opti-
mization techniques: single optimization and optimization with
multiple restarts. In order to match the number of evaluations
with GADMA?2, the 9adi optimization with multiple restarts has
16 restarts. Additionally, results from Blischak et al. (2020) are in-
cluded, which were obtained using single dadi optimization with
different initialization process. BFGS optimization was used as an
optimization from 9adi. The results obtained from GADMA? are
highlighted in bold, as they achieved the best mean and best log-
likelihood values.

Supplementary Table S23. Log-scale standard deviations for pa-
rameters in the model without inbreeding for American pumas
across a series of step sizes.

Supplementary Table S24. Log-scale standard deviations for pa-
rameters in the model with inbreeding for American pumas
across a series of step sizes.

Supplementary Table S25. Maximum likelihood parameters in-
ferred from the demographic models for the Texas and Florida
populations of American puma.

Supplementary Table S26. Result statistics obtained from 100
repeats of 2 of 9adi’s optimization techniques and GADMA? in
a case of the demographic inference without inbreeding for the
domesticated cabbage. The reported statistics include the mean
and standard deviation of the number of evaluations, CPU times,
and log-likelihoods. GADMA? is compared with 2 of 9adi’s opti-
mization techniques: single optimization and optimization with
multiple restarts. Additionally, results from Blischak et al. (2020)
are included, which were obtained using single 9adi optimiza-
tion with a different initialization process. In order to match
the number of evaluations with GADMA2, the 9adi optimiza-
tion with multiple restarts has 27 restarts. BOBYQA optimiza-
tion was used as an optimization from dadi. The results obtained
from 9adi's optimization with multiple restarts are highlighted
in bold, as they achieved the best mean and best log-likelihood
values.

Supplementary Table S27. Result statistics obtained from 100 re-
peats of 2 of 9adi’'s optimization techniques and GADMA? in a
case of the demographic inference with inbreeding for the do-
mesticated cabbage. The reported statistics include the mean and
standard deviation of the number of evaluations, CPU times, and
log-likelihoods. GADMA?2 is compared with 2 of 9adi’s optimiza-
tion techniques: single optimization and optimization with mul-
tiple restarts. Additionally, results from Blischak et al. (2020) are
included, which were obtained using single 9adi optimization with
a different initialization process. In order to match the number
of evaluations with GADMAZ2, the 9adi optimization with multi-
ple restarts has 16 restarts. BOBYQA optimization was used as
an optimization from 9adi. The results obtained from dadi’s op-
timization with multiple restarts are highlighted in bold, as they
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achieved the best mean and slightly better than GADMA?2 best log-
likelihood values.

Supplementary Table S28. Log-scale standard deviations for pa-
rameters in the model without inbreeding for domesticated cab-
bage across a series of step sizes.

Supplementary Table S29. Log-scale standard deviations for pa-
rameters in the model with inbreeding for domesticated cabbage
across a series of step sizes.

Supplementary Table $30. Maximum likelihood parameters in-
ferred from the demographic models for the domesticated cab-
bage population.

Abbreviations

AFS: allele frequency spectrum; bp: base pair; CI: confidence in-
terval; Gbp: gigabase pair; LD: linkage disequilibrium.

Data Availability

An archival copy of the code and other supporting data, also in-
cluding scripts to reproduce the figures, are available via the Gi-
gaScience repository, GigaDB [55]. The scripts and the results of hy-
perparameter optimization experiments are saved in the reposi-
tory and available via the link [56]. The results of GADMA runs for
different hyperparameter configurations are stored as an archive
available in the GigaScience repository, GigaDB [55]. The results of
experiments about inbreeding are added to the repository with
the final demographic histories inferred in the original paper of
GADMA and are located via the link [57].
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