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Abstract 

Bac kgr ound: Inference of complex demographic histories is a source of information about events that happened in the past of studied 

populations. Existing methods for demographic inference typically require input from the resear c her in the form of a parameterized 

model. With an incr eased v ariety of methods and tools, each with its own interface, the model specification becomes tedious and 

err or-pr one. Mor eov er, optimization algorithms used to find model parameters sometimes turn out to be inefficient, for instance, by 
being not pr operl y tuned or highl y de pendent on a user-pr ovided initialization. The open-source softw ar e GADMA addr esses these 
pr ob lems, pr oviding automatic demographic inference. It proposes a common interface for several likelihood engines and provides 
global parameters optimization based on a genetic algorithm. 

Results: Here , w e introduce the new GADMA2 softw ar e and pr ovide a detailed description of the added and expanded features. It 
has a r enov ated cor e code base, new likelihood engines, an updated optimization algorithm, and a flexible setup for automatic model 
construction. We provide a full overview of GADMA2 enhancements, compare the performance of supported likelihood engines on 

simulated data, and demonstrate an example of GADMA2 usage on 2 empirical datasets. 

Conclusions: We demonstrate the better performance of a genetic algorithm in GADMA2 by comparing it to the initial version and 

other existing optimization approaches. Our experiments on simulated data indicate that GADMA2’s likelihood engines are able to 
provide accurate estimations of demographic parameters even for misspecified models. We impr ov e model parameters for 2 empirical 
datasets of inbred species. 

Ke yw or ds: demogr aphic inference, population genetics, genetic algorithm, hyperparameter optimization 
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Introduction 

The ev olutionary for ces form a genetic variety of closel y r elated 

species and populations. Principal historical e v ents like diver- 
gence, population size c hange, migr ation, and selection could be 
r econstructed fr om the genetic data using differ ent algorithmic 
and statistical a ppr oac hes. Infer ence of complex demogr a phic 
histories is widel y a pplied in conservation biology studies to iden- 
tify major e v ents in the population’s past [ 1–3 ]. It supplements 
archaeological information about the historical processes that 
have left no paleontological records. Finally, demographic histo- 
ries form the basis for subsequent population studies and medical 
genetic r esearc h. 

In recent years, many methods for demographic inference have 
a ppear ed to investigate the demographic histories of species or 
populations [ 4–12 ]. Some of them give a point estimate for the 
unknown demogr a phic par ameters [ 4 , 7 , 11 ] while others give the 
distribution thereof [ 5 , 6 , 8 ]. In this article, we focus inclusiv el y on 

the former. Most methods that provide point estimates consist of 
2 independent components . T he first component pro vides means 
to compute data statistics under a proposed demographic history 
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nd compare them with real data by the log-likelihood value. One
f the most widely used data statistics is the allele frequency spec-
rum (e.g., [ 4 , 7 , 10 ]). Ho w e v er, ne wer methods based on 2-locus
 13 ] and linkage disequilibrium (LD) statistics [ 14 , 15 ] have also
ecome a vailable . T his article will denote the first component as
n likelihood engine . The second component of existing tools is opti-
ization . It r equir es a user-defined model of demogr a phic history
nd performs a search of the maximal likelihood model param-
ters using different optimization algorithms. While a number of 
ptimization tec hniques ar e pr ovided, they often turn out to be
neffective in practical applications [ 16 ]. 

In 2020, we presented a new software GADMA [ 16 ] for unsu-
ervised demogr a phic infer ence fr om the allele frequency spec-
rum (AFS) data. It provides a common interface for various
lread y existing lik elihood engines and intr oduces ne w global
earch optimization based on a genetic algorithm. GADMA does 
ot r equir e complicated model specification. Instead, it takes 
odel structure that determines how many time epochs are in-

luded in the model. Pr e viousl y, models of demogr a phic history
er e par ameterized onl y by continuous par ameters and had fixed
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unrestricted reuse, distribution, and reproduction in any medium, provided 

http://orcid.org/0000-0003-1168-0497
http://orcid.org/0000-0002-0421-2460
http://orcid.org/0000-0002-8877-7329
http://orcid.org/0000-0002-9688-9347
http://orcid.org/0000-0001-6995-5620
http://orcid.org/0000-0003-0802-830X
mailto:ekaterina.e.noskova@gmail.com
https://creativecommons.org/licenses/by/4.0/


2 | GigaScience , 2023, Vol. 12, No. 1 

Figure 1: Scheme of GADMA2. New features and enhancements are marked with a gradient gray color. GADMA2 takes input genetic data presented in 
either AFS or VCF formats, engine name, and model specifications and provides inferred model parameters, visualization, and descriptions of the final 
demogr a phic history. 
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opulation size dynamics. Constant size or exponential growth
ould be examples of such dynamics. GADMA’s model with struc-
ure extends the regular concept of a model by including dy-
amics as discrete model parameters . T hus , it can automati-
ally construct history as a sequence of time epochs with desired
arameter types from blocks of constant, linear, and exponen-
ial size changes . T he r esearc her has contr ol ov er the types of

odel parameters to infer. For example, all migrations could be
isabled. 

It w as sho wn that the proposed genetic algorithm a ppr oac h
n GADMA has better performance than pr e viousl y existing op-
imization algorithms both on simulated and real datasets [ 16 ].
ADMA pr ov ed itself ca pable of finding demogr a phic histories

hat attain higher log-likelihood than the histories reported in
he liter atur e and obtained using the default optimization rou-
ines of ∂ a ∂ i or moments . Mor eov er, using demogr a phic models
ith structure, GADMA was able to find a new demographic his-

ory of modern human populations that is both paleontologically
lausible and has better log-likelihood than the existing “Out-of-
frica” scenario from Gutenkunst et al. [ 4 ]. Since its initial publi-
ation, GADMA has been applied in se v er al studies on a variety
f species: Xiong et al. [ 17 ], Valdez and D’Elía [ 18 ], P azhenk ov a
nd Lukhtanov [ 19 ], Cassin-Sackett et al. [ 20 ], and Buggiotti
 21 ]. 

The initial version of GADMA featur es onl y 2 likelihood engines:
 a ∂ i [ 4 ] and moments [ 7 ]. Both of these engines compute the allele
requency spectrum statistics using the Wright–Fisher diffusion-
ased a ppr oac h and thus pr ovide similar r esults. Among the v ari-
ty of other available tools, we can highlight methods based either
n AFS ( momi2 , fastsimcoal2 ), LD statistics ( momentsLD ), or haplo-
ype data (diCal2) as potential additions to the supported engines
n GADMA. Some already implemented features of ∂ a ∂ i and mo-
ents , like the inference of selection and dominance r ates, ar e not

ncluded in the first version of GADMA. Both ∂ a ∂ i and moments
av e been upgr aded since these pr ogr ams wer e first published
nd since GADMA’s initial release . For example , ∂ a ∂ i introduced
nference of the inbreeding coefficients [ 22 ], started to support de-

ogr a phic histories involving 4 and 5 populations and enabled
r a phics pr ocessing unit support [ 23 ]. In light of these advance-
ents , we ha ve sought to extend GADMA in se v er al dir ections to

upport ne w featur es and engines and further enhance its opti-
ization algorithm. 
In this article, we describe new capabilities implemented in

ADMA2. We compare supported likelihood engines of GADMA2
n 2 simulated datasets for different demographic models. Fur-
hermor e, we demonstr ate the efficiency of the updated version
n 2 empirical datasets of inbred species from Blischak et al. [ 22 ].

GADMA2 has an updated core codebase and implements a
ore efficient and flexible unsupervised demographic inference
ethod. T he impro ved version extends the initial GADMA in

e v er al ways (Fig. 1 ). First, the genetic algorithm in GADMA2
s impr ov ed by hyper par ameter optimization. Ne w v alues of
he genetic algorithm hyper par ameters that pr ovide mor e effi-
ient and stable conv er gence ar e found. Second, GADMA2 pr o-
ides more flexible control of the model specification for au-
omatic model construction. For example, it is possible to in-
lude inferences about selection and inbreeding coefficients.
hird, 2 new likelihood engines are integrated: momi2 and mo-
entsLD . T hus , GADMA2 supports 4 engines ov er all. Lastl y, se v-

ral functional enhancements are integrated, including the abil-
ty to use data in variant call format (VCF) format and new en-
ines for history r epr esentation and visualization ( momi2 and
emes ). 

aterials and Methods 

atasets 

e use se v er al datasets in this work. Datasets for the hyperpa-
ameter optimization are taken from the Python package dem-
nf_data v1.0.0 (Supplementary Fig. S1) that is available on
itHub via the link [ 24 ]. Deminf_data contains various datasets
ith both real and simulated AFS data. Simulations are performed
ith moments [ 7 ] softwar e. Eac h dataset is named according to the

onvention described in Supplementary Fig. S1 and includes (i) the
llele frequency spectrum data, (ii) the model of the demogr a phic
istory, and (iii) bounds of the model parameters. Full descriptions
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Figure 2: Demogr a phic histories used in data sim ulations po w ered b y 
stdpopsim [ 25 ] for performance comparison of GADMA2 likelihood 
engines. (a) History of African (AFR) and European (EUR) populations of 
Drosophila melanogaster from Li and Stephan [ 27 ]. (b) History of Pongo 
pygmaeus (Bornean) and Pongo abelii (Sumatran) orangutan species from 

Locke et al. [ 30 ]. 
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of the data and demogr a phic model par ameters of datasets are 
available in the repository on GitHub. For hyper par ameter opti- 
mization, we used 10 datasets from deminf_data : 4 as training 
problem instances and 6 for testing. Basic descriptions of these 
datasets ar e av ailable in section S1.1 of the Supplementary Mate- 
rials. 

The performance of GADMA2’s engines is e v aluated on 2 sim- 
ulated datasets: populations of fruit flies and orangutan species.
For sim ulation pur poses, we used a pr e viousl y described scenarios 
available within the stdpopsim library [ 25 ]. Each dataset simulated 

by msprime engine [ 26 ] includes genetic data of 5 diploid individ- 
uals per each population. 

Li and Stephan [ 27 ] presented the demographic history of 
Drosophila melanogaster populations from Africa and Europe . T he 
visual r epr esentation of the history is shown in Fig. 2 a. The African 

population is c har acterized by a single instantaneous expansion.
The origin of the European population is a result of the div er gence 
of a very limited number of individuals follo w ed b y instantaneous 
expansion. Five autosomal chromosomes with a total length of 
0.11 Gbp are simulated under this demographic history. We use a 
m utation r ate equal to 5.49 · 10 −9 per base per generation [ 28 ] and 

a recombination rate of 8.4 · 10 −9 per base per generation [ 29 ]. 
The demogr a phic history of the Bornean ( Pongo pygmaeus ) 

and Sumatran ( Pongo abelii ) orangutans was originally inferred 

in Locke et al. [ 30 ] and is shown in Fig. 2 B. Specifically, it is an 

isolation-with-migration history that describes the ancestral pop- 
ulation split follo w ed b y the exponential growth of Sumatran and 

an exponential decline of Bornean or angutans. We sim ulate 23 
autosomal c hr omosomes with a total length of 2.87 Gbp. The mu- 
tation rate used in the simulation is equal to 1.5 · 10 −8 per site per 
gener ation [ 31 ]. Av er a ged r ecombination r ates for eac h c hr omo- 
some are taken from the Pongo abelii recombination map inferred 

in Nater et al. [ 31 ]. 
Datasets for the demogr a phic infer ence of inbr ed species ar e 

taken from the original study by Blischak et al. [ 22 ]. The 11 × 5 
AFS data for 2 populations of the American puma ( Puma concolor ) 
were constructed on the basis of Ochoa et al. [ 32 ]. The AFS data 
for 45 individuals of domesticated cabbage ( Br assica oler acea ) were 
obtained fr om publicl y av ailable r esequencing data [ 33 , 34 ]. Both 

allele frequency spectra are folded due to a lack of information 

about ancestral alleles. Datasets are presented in the repository 
of the original article and are available via the following link [ 35 ].

Hyperpar ameter optimiza tion 

GADMA uses a genetic algorithm to optimize the demogr a phic pa- 
rameters [ 16 ]. A hyperparameter is usually defined as a parameter 
f an algorithm. The performance of any algorithm depends on
ts hyper par ameters, and optimization of their v alues can signifi-
antl y impr ov e the ov er all efficiency. As an example of a hyperpa-
ameter, we can consider the number of demogr a phic models in 1
teration of the genetic algorithm. Se v er al tec hniques can be used
or the optimization of hyper par ameters , and Ba yesian optimiza-
ion is one of the most popular methods [ 36 ]. The efficient method
ased on the Bayesian optimization is implemented in SMAC soft-
are [ 37 , 38 ]. It has been applied in a number of studies, including
ptimization of neural networks [ 39–41 ]. 

SMAC addresses the algorithm configuration problem, which 

nvolves determining the optimal hyperparameters for a given 

lgorithm acr oss m ultiple instances. As suc h, it needs to solv e
 m ultiobjectiv e optimization pr oblem. To do this, SMAC uses a
euristic a ppr oac h that optimizes a single objectiv e function, the
v er a ge v alue of the giv en cost function acr oss the entir e set of
r oblem instances. Her e we will r efer to the objective function
alue as the SMAC score . The researcher usually selects the cost
unction according to the goal of the optimization process . T his
ost function is typically based on factors such as the time re-
uired to solve the problem or the quality of the solution achieved
ithin a specific budget. It is important to exercise caution when
orking with SMAC score: since values of cost function are aver-
 ged acr oss a giv en set of instances, it is essential that they have
he same scale. 

We use SMAC to tune the hyper par ameters of the genetic algo-
ithm in GADMA2. We divide all datasets into 2 groups of training
nd test datasets . T he optimization is performed for GADMA’s ge-
etic algorithm using moments engine and 4 training datasets as
roblem instances. Test datasets are used to validate the perfor-
ance of the new configurations after optimization using SMAC.

o ensure that the cost function has the same scale across all
roblem instances, we select the training datasets such that they
ave an identical number of populations and sample size. We
hoose the cost function as the best log-likelihood value achieved
y GADMA’s genetic algorithm within a fixed number of like-
ihood e v aluations . Regular GADMA’s pipeline , though, ma y re-
uire less or more evaluations to run depending on the dataset
s it has a stop criterion that is based on the conv er gence. We
ake 200 times the number of dataset parameters as an allo w ed
 umber of lik elihood e v aluations for the genetic algorithm runs

n SMAC. Such a number of evaluations is a trade-off between
peed and accurac y: accor ding to the conv er gence plots, the con-
 er gence of default genetic algorithm optimization is slowing
own at this point and is very close to the plateau walk (Supple-
entary Fig. S2, Supplementary Fig. S3). We note that we count

he log-likelihood e v aluations r ather than the iterations of the
enetic algorithm, as 1 iteration may involve multiple evalua- 
ions and the number of e v aluations can vary across different
onfigurations. 

We perform se v er al attempts of SMAC optimization for differ-
nt variants of hyperparameter configurations . T he descriptions 
nd domains of all hyper par ameters ar e giv en in Supplemen-
ary Table S1 and Table 1 corr espondingl y. Eac h attempt took 2
eeks in 10 parallel processes (Intel ® Xeon ® Gold 6248). First, op-

imization of all genetic algorithm hyper par ameters is executed.
hen, 2 discr ete hyper par ameters ( gen_size and n_init_const )
re fixed to 5 man ually pick ed combinations of domain val-
es. SMAC is used to find optimal continuous hyper par ame-
ers for each combination. Four combinations were excluded 

r om the anal ysis. Hyper par ameter gen_size that corr esponds
o the size of generation in a genetic algorithm is not tested for
he value of 100 due to r elativ el y slow conv er gence. This elim-
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Table 1: Hyper par ameters of the genetic algorithm in GADMA, their domains used in SMAC, and final values after each optimization 

attempt with SMAC. Hyper par ameter v alues fr om attempt 1 ar e equal to the default GADMA values as SMAC failed to find a better 
configur ation. For eac h of 2 to 6 attempts, 2 discr ete hyper par ameters ( gen_size and n_init_const ) ar e fixed in order to gain SMAC 

efficiency 

Attempt number 

Hyperparameter ID Domain 1 (default) 2 3 4 5 6 

gen_size {10, 50, 100} 10 10 ∗ 10 ∗ 10 ∗ 50 ∗ 50 ∗

n_init_const {5, 10, 20} 10 10 ∗ 5 ∗ 20 ∗ 10 ∗ 20 ∗

p_elitism [0, 1] 0.20 0.30 0.30 0.30 0.40 0.40 
p_mutation [0, 1] 0.30 0.20 0.20 0.20 0.08 0.10 
p_crossover [0, 1] 0.30 0.30 0.30 0.30 0.42 0.46 
p_random [0, 1] 0.20 0.20 0.20 0.20 0.10 0.04 
mutation_strength [0, 1] 0.200 0.776 0.370 0.534 0.833 0.528 
const_mutation_strength [1, 2] 1.010 1.302 1.290 1.648 1.199 1.492 
mutation_rate [0, 1] 0.200 0.273 0.886 0.882 0.595 0.345 
const_mutation_rate [1, 2] 1.020 1.475 1.942 1.417 1.645 1.472 

∗These values are fixed during the hyperparameter optimization with SMAC. 
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nates 3 combinations. Additionally, the constant of initial de-
ign n_init_const equal to 5 is excluded for a case of gen_size
qual to 50 as it provides a small number of solutions for the first
eneration. 

Ov er all, we make 6 attempts of hyper par ameter optimization
sing SMAC. Unlike the training datasets, the additional 6 test
atasets are selected to be diverse and, as a r esult, hav e v ary-

ng scales of their likelihood functions . T her efor e, it is not cor-
 ect to compar e ne w configur ations obtained fr om differ ent SMAC
ttempts using the SMAC score calculated across both training
nd test datasets . Furthermore , the genetic algorithm within the
MAC fr ame w ork w as terminated earlier than during a regular
ADMA run. Ne v ertheless, we first validate the efficiency of SMAC
nd make preliminary comparisons of the new configurations for
he AFS-based engines ( moments , ∂ a ∂ i, and momi2 ) using SMAC
cor es e v aluated acr oss 128 independent runs . T hen we compared
e w configur ations by the log-likelihood v alues obtained fr om full
enetic algorithm runs using the usual GADMA stop criterion. We
se the same or equivalent criteria as the initial GADMA version
o terminate the genetic algorithm [ 16 ]. For example, the genetic
lgorithm with a configuration with a generation size ( gen_size )
f 10 stops after 100 iterations without improvement, while
he equi valent n umber of 20 iter ations without impr ov ement is
sed as a stop criterion for configurations with gen_size equal
o 50. 

The ne w configur ations ar e compar ed as follo ws. First, w e
easure the speedup, which is the average fraction of the log-

ikelihood e v aluations sav ed by a ne w configur ation compar ed to
he default configuration. Then, we compare each new configu-
 ation a gainst the default configur ation using the r esulting likeli-
oods and determine its performance as better , worse , or incompa-

able for each dataset. For a fixed dataset, we consider a new con-
guration to be better if the median and both quartiles of the 128

ikelihood v alues ar e higher than these quantities for the default
onfiguration. If the median and both quartiles are lo w er, w e con-
ider the performance on the dataset to be worse . Otherwise , we
eclare the case incomparable. We aim to select a configuration
aking into account both the speedup and the likelihood compar-
sons against the default configuration. Our goal is to find a con-
guration that is faster and performs better than the default con-
guration on as many datasets as possible, while also minimizing
he number of datasets where it performs worse. 

More information and details are available in section S1 of the
upplementary Materials. 
erformance test of GADMA2 engines 

our engines supported by GADMA2 ( ∂ a ∂ i, moments , momi2 , mo-
entsLD ) ar e compar ed on 2 sim ulated datasets of fruit fly pop-
lations and orangutan species. For each dataset, we test se v er al
odels of the demogr a phic history. The first 2 models are based on

he ground-truth history used in the simulations but differ in the
r esence of migr ation. Then we infer par ameters for 2 structure
odels with and without migration using the GADMA2 feature

or automatic demogr a phic infer ence. For the or angutan dataset,
 additional models with pulse migrations are analyzed. The per-
ormance of all 4 engines is compared, but momi2 engine is not
ested for models with continuous migration as it does not sup-
ort it. We run GADMA2 inference 8 times for each engine and
odel. P ar ameters of the history with the best log-likelihood are

 eported. Mutation and r ecombination r ates for demogr a phic in-
er ence ar e taken the same as in the data sim ulation. Their v alues
r e av ailable in the Datasets section. 

Using GADMA2 engines, we find and compare parameters for
 models of D. melanogaster demogr a phic history (Supplementary
able S5). Model DROS-NOMIG is an isolation model with instan-
aneous size change of the African population follo w ed b y sepa-
ation of the European population, which experiences 2 epochs of
onstant sizes . P opulation sizes during these epoc hs ar e not de-
endent on each other. Model DROS-MIG describes the scenario

dentical to DROS-NOMIG but includes continuous asymmetric
igration between populations from their divergence until pres-

nce. Both models DR OS-NOMIG and DR OS-MIG align with the
riginal isolation history used for data sim ulation. Lastl y, we test
 models with (DROS-STRUCT-MIG) and without (DROS-STRUCT-
OMIG) migration for structure (2, 1). This notation means a
odel consisting of 2 epoc hs befor e the ancestral population split

ollo w ed b y div er gence and 1 epoc h for eac h of the 2 subpopula-
ions. More details on model structure specification can be found
n Nosk ov a et al. [ 16 ]. By their definition, these structure mod-
ls are misspecified due to simplification of the European pop-
lation’s history: a 2-epoch scenario of the European population

s a ppr o ximated by 1 e poc h with constant size, linear c hange, or
xponential change. 

We analyze engines’ performance on the orangutan dataset for
 demogr a phic models (Supplementary Table S13). Model ORAN-
OMIG is isolation with the ancestral population split follo w ed
y the exponential size changes of the Sumatran and Bornean
rangutans. Model ORAN-MIG aligns with the history used in data
imulation and describes an isolation-with-migration with the an-



GADMA2 for demogr a phic infer ence | 5 

 

 

 

 

r  

g  

t  

t  

I  

r  

g  

 

e  

[  

u  

G  

c  

w  

s  

f  

f
w  

f  

e

R
U
T  

r  

T  

t
1  

h  

t  

b  

i  

i  

c
o
p

 

m
c  

fi  

d  

m  

m  

S  

s  

t  

m  

fi  

b  

m  

r  

w  

A
e  

 

u
r  

w  

r  

n  

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giad059/7248629 by guest on 26 August 2023
cestral population split follo w ed b y the exponential size changes 
of the Sumatran and Bornean orangutans. An additional 2 mod- 
els with structure (1, 1) without (ORAN-STRUCT-NOMIG) and with 

continuous migr ation (ORAN-STRUCT-MIG) ar e included in the 
analysis. We note that the original history contains gene flow and 

can be corr ectl y estimated using ORAN-MIG and ORAN-STRUCT- 
MIG models. 

In order to overcome momi2 ’s limitation on continuous migra- 
tions presented in the orangutan history, we tested the engine 
for additional demogr a phic scenarios with pulse migr ations. A 

different number of pulse migrations with equal rates are uni- 
formly distributed within the epoch between the present time 
and species div er gence time . ORAN-NOMIG and ORAN-STR UCT- 
NOMIG models ar e compar ed with 3 additional demogr a phic 
models: (i) with 1 pulse migration (ORAN-PULSE1), (ii) with 3 
pulse migrations (ORAN-PULSE3), and (iii) with 7 pulse migra- 
tions (ORAN-PULSE7). 

Inference of inbreeding coefficients 

We perform demogr a phic infer ence with GADMA2 using the data 
of the American pumas ( P. concolor ) and domesticated cabbage ( B.
oleracea var. capitata ) from Blischak et al. [ 22 ]. For each dataset, pa- 
rameters of 2 demographic models are inferred: (i) model from the 
original study without inbreeding and (ii) model from the orig- 
inal study with inbr eeding. Eac h demogr a phic infer ence is run 

100 times, and the history with the highest log-likelihood value 
is selected. Two result histories are compared with the likelihood 

ratio test [ 42 ] to investigate which history best fits the data. 
First, we use the same parameter bounds to repeat the demo- 

gr a phic infer ence fr om Blisc hak et al. [ 22 ] with GADMA2. We com- 
pare the results of 100 runs of GADMA2 with the same number 
of results received using ∂ a ∂ i’s optimization techniques . T hen we 
perform another round of demogr a phic infer ence with GADMA2 
using wider bounds of parameters. 

Performance of GADMA2 is compared with performance of 2 
optimization techniques from ∂ a ∂ i within the same setup as in 

Blischak et al. [ 22 ]. We first reproduce 100 launches of a single 
∂ a ∂ i’s optimization as they were conducted in the original study 
and measure the average number of evaluations and time of ex- 
ecution. Next, we run ∂ a ∂ i’s optimization with restarts, meaning 
that the optimization is restarted multiple times for each run and 

the best log-likelihood parameters are considered as the result. In 

order to balance computational costs, number of restarts is deter- 
mined to match the average number of evaluations of GADMA2.
Notabl y, if av er a ge ∂ a ∂ i’s single optimization run r equir es X like- 
lihood e v aluations and the av er a ge GADMA2 run involv es Y e v al- 
uations, we compare the GADMA2 run with the run of ∂ a ∂ i op- 
timization with 

⌈ Y 
X 

⌉
restarts. We consider the number of e v alu- 

ations for comparison of computational costs. It is a more reli- 
able metric than the time of execution, as it is not affected by the 
specific har dw ar e or par ameter v alues used during optimization.
Used optimization techniques from ∂ a ∂ i require initial estimation 

of par ameters, whic h can be done by sampling fr om a wide r ange 
of distributions. To ensure correct comparison, we use distribution 

from the GADMA2 initial design to perform this initialization. 
We report and compare the mean, the standard deviation, and 

the best value of log-likelihood for 100 run repeats of GADMA2, of 
a single ∂ a ∂ i’s optimization, and of the ∂ a ∂ i’s optimization with 

restarts . T he optimization methods used for ∂ a ∂ i runs are the 
BFGS algorithm [ 43–46 ] for the American puma data and the 
BOBYQA method [ 47 ] for the domesticated cabbage data, as de- 
scribed in Blischak et al. [ 22 ]. 
Mutation r ates, gener ation times, and sequence lengths for pa-
 ameter tr anslation wer e taken fr om Blisc hak et al. [ 22 ]. Demo-
r a phic par ameters for P. concolor ar e tr anslated fr om the genetic
o real units using a mutation rate of μ = 2.2 × 10 −9 , a generation
ime of 3 years, and a sequence length of 2,564,692,624 bp [ 32 ].
n the case of B. oleracea v ar. capitata , population demogr a phic pa-
 ameters ar e tr anslated using a m utation r ate of μ = 1.5 × 10 −8 , a
eneration time of 1 year, and a sequence length of 411,560,319 bp.

The Godambe information matrix a ppr oac h [ 42 ] was used for
 v aluation of the confidence intervals (CIs) in the original study
 22 ]. This a ppr oac h r equir es step size ε to estimate parameters’
ncertainty. The value of step size can influence the stability of
odambe a ppr oximation, and se v er al v alues should be tested to
onfirm consistent results between them. As in Blischak et al. [ 22 ,]
e estimate and compare uncertainties across a range of step

izes: 10 −2 − 10 −7 by factors of 10. Reported confidence intervals
or the final histories are estimated on 100 bootstr a pped AFS data
rom the original study using the Godambe information matrix 
ith a step size equal to ε = 10 −2 [ 42 ]. The scripts and data used

or CI e v aluation ar e taken fr om the r epository [ 35 ] of Blisc hak
t al. [ 22 ]. 

esults and Discussion 

pdated genetic algorithm 

he genetic algorithm in GADMA2 is impr ov ed by the hyperpa-
ameter optimization implemented in SMAC software [ 37 , 38 ].
en hyper par ameters (Table 1 ) of the genetic algorithm were op-
imized during the first optimization attempt. SMAC performed 

3,900 runs of the genetic algorithm and tested 2,222 different
yper par ameter configur ations . T his process took 2 weeks of con-
inuous computations on cluster. Ho w e v er, SMAC failed to find a
etter solution than the default one. We assume that such behav-

or may be caused by the presence of 2 discrete hyperparameters
n the configuration. These hyperparameters are fixed to 5 spe-
ific combinations of the domain values during the next attempts 
f SMAC-based optimization of the remaining continuous hyper- 
arameters. 

As a result, we perform 6 attempts of hyper par ameter opti-
ization for different configurations of GADMA2, and the result 

onfigur ations ar e pr esented in Table 1 . For eac h of these ne w con-
gur ations, we manuall y e v aluate the SMAC scor es using 128 in-
ependent runs for each dataset and engine ( moments , ∂ a ∂ i, and
omi2 ). They can be found in Supplementary Table S2 for the mo-
ents engine, Supplementary Table S3 for the ∂ a ∂ i engine, and
upplementary Table S4 for the momi2 engine . T he costs and re-
ults for ∂ a ∂ i ar e v ery similar to those for moments , supporting
he idea that ∂ a ∂ i and moments engines have very similar perfor-

ance. Based on the obtained SMAC scores, the attempt 3 con-
guration is the best for moments and momi2 engines and second
est for the ∂ a ∂ i engine. Ho w e v er, we do not r el y solel y on the
ean SMAC score as a selection criterion for these new configu-

ations . T his is because during SMAC runs, the genetic algorithm
as stopped earlier, and its full run performance may be different.
d ditionally, log-lik elihoods between test datasets and between 

ngines have different scales, making direct comparison difficult.
To address this problem, we determine the best new config-

ration based on the performance of 128 full genetic algorithm 

uns using moments and momi2 engines. For each configuration,
e measure the average speedup and indicate whether or not the

esult likelihood is better than for the default configuration. We do
ot perform the full runs for the ∂ a ∂ i engine due to high computa-
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ional costs and its similarity to the moments engine . T he boxplots
f log-likelihood values and the required number of evaluations
r e pr esented in Supplementary Fig. S4 for the moments engine
nd Supplementary Fig. S10 for the momi2 engine . T he con ver-
ence plots of a genetic algorithm with different configurations on
raining and test datasets are presented in Supplementary Figs. S2
nd S3 for the moments engine , Supplementary Figs . S6 and S7 for
he ∂ a ∂ i engine , and Supplementary Figs . S8 and S9 for the momi2
ngine . T he dataset counts for which new configurations demon-
tr ate better, worse, and incompar able performance comparing
o the default configuration are presented in Supplementary Fig.
5 for the moments engine and in Supplementary Fig. S11 for the
omi2 engine. 
On most datasets, all new configurations require a smaller

umber of e v aluations than the default genetic algorithm (Sup-
lementary Figs. S4 and S10). There is only 1 dataset, 2_Exp-
oMig_5_Sim ( moments engine), for which the default configura-
ion performs faster than all new configurations. In general, the
onfigur ations fr om attempts 3, 5, and 6 are the fastest. Ho w e v er,
heir log-likelihoods are worse than the default configuration on

ost datasets (Supplementary Figs. S5 and S11). Configurations
rom attempts 2 and 4 demonstrate best performance in terms of
esulting likelihoods among new configurations . Moreo ver, the ge-
etic algorithm with hyper par ameters fr om attempt 2 has better

og-likelihood results for the moments engine while the configura-
ion from attempt 4 has better performance for the momi2 engine.
ince the hyper par ameter optimization used the moments engine,
e choose the configuration from attempt 2 for the genetic al-
orithm in GADMA2. Figure 3 summarizes the improvement ob-
ained by GADMA2 with the new hyperparameters as compared
o the initial version. The new configuration saves around 10%
f e v aluations and pr ovides better r esults on av er a ge compar ed
o the default genetic algorithm. Some examples of the conver-
ence plots that compare the pr e vious v ersion of the genetic al-
orithm and the ne w v ersion of genetic algorithm ar e pr esented in
ig. 4 . 

lexible structure model 
utomatic demogr a phic model construction is a centr al featur e
f GADMA. It replaces the fully manual choice of a model with
 model structure specification. Tr aditionall y, demogr a phic mod-
ls onl y hav e continuous par ameters. Demogr a phic structur es, on
he other hand, define the number of epochs before, after, and be-
ween population splitting e v ents and assign a discrete variable
 epr esenting population dynamics type to each epoch. GADMA
ptimizes over these discrete variables alongside with the usual
ontinuous ones, examining what would be a multitude of mod-
ls in the traditional sense. GADMA2 gives the user more control
ver the search space in this setting. 

igr ation r ates 
ne of the existing controls over model parameters is the oppor-

unity to disable all migration events and to infer demogr a phic
istory without any gene flow. GADMA2 now includes a new con-
rol handle to make migrations symmetric. Additionally, it al-
ows for specific migrations to be disabled by setting up migration

asks. 

election and dominance rates 
oth of the initially supported likelihood engines included in
ADMA, ∂ a ∂ i, and moments are able to infer selection and
ominance rates . T his infer ence a ppr oac h, first pr esented in
illiamson et al. [ 48 ], assumes a single selection rate for the entire
opulation while real genetic data could consist of regions with
iffer ent r ates. Despite this simplification, suc h infer ence can pr o-
ide useful estimations of selection. The first version of GADMA
acked the function to make these inferences, and we have added
hese in the new version. GADMA2 enables the approximation of
election rates and dominance coefficients for automatically con-
tructed demogr a phic models. 

opulation size dynamics 
ADMA2 provides additional flexibility for population size esti-
ation during model construction. Pr e viousl y, demogr a phic pa-

 ameters suc h as functions of population size c hanges wer e esti-
ated within a fixed set of 3 possible dynamics: constant, linear,

r exponential change. Now, the list of available population size
ynamics in GADMA2 can be appointed to any subset of 3 basic
unctions . T hus , for example , linear size change can be excluded
r om the demogr a phic infer ence if onl y constant and exponential
ynamics are applicable, like in the case of the momi2 engine. 

nbreeding coefficients 
ince the publication of the first version of GADMA, the supported
ikelihood engines were also upgraded. GADMA2 follows these
hanges and includes inference of inbreeding coefficients that
ere implemented in ∂ a ∂ i [ 22 ]. Using this ne w featur e included

n ∂ a ∂ i, we demonstrate that GADMA2 provides better and more
table results for inference of the demographic models obtained
rom data for the puma and cabba ge r eported by Blischak et al.
 22 ] (Supplementary Tables S21, S22, S26, and S27). 

a ta forma ts 

nother impr ov ement of ∂ a ∂ i and moments is the ability to build
n AFS dataset dir ectl y fr om a VCF file. Befor e this featur e was
mplemented, this had to be done either manually or using an-
ther software like easySFS [ 49 ]. GADMA2 is able to read data di-
 ectl y fr om a VCF file and downsize, exclude populations fr om, or
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Figure 4: Example conv er gence plots for the default genetic algorithm 

configur ation fr om the initial v ersion of GADMA (r ed) and configur ation 
obtained during attempt 2 of hyper par ameter optimization with SMAC 

(green) on 2 datasets: (a) training dataset 2_DivMig_5_Sim and (b) test 
dataset 3_DivMig_8_Sim . For each configuration, 128 independent 
optimization runs were performed. Solid lines correspond to median 
conv er gence ov er 128 run,s and shado w ed areas are ranges between the 
first (0.25) and third (0.75) quartiles . T he vertical dashed black line refers 
to the number of e v aluations used to stop a genetic algorithm in SMAC. 
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build a folded AFS automaticall y. Suc h a featur e allows broader 
and more convenient usage of GADMA2. 

New likelihood engines 

In addition to ∂ a ∂ i and moments , GADMA2 now includes 2 new like- 
lihood engines: momi2 [ 10 ] and momentsLD [ 14 , 15 ]. T hus , 4 engines 
ar e pr ovided in the common interface of GADMA2. Both ∂ a ∂ i and 

moments engines are based on the Wright–Fisher diffusion and use 
allele frequency spectrum statistics for demographic inference. 

Momi2 implements a structured coalescent–backw ar d-in-time 
stoc hastic pr ocess that is dual to the Wright–Fisher diffusion yet 
scales well to a large number of populations. It also uses AFS data 
as ∂ a ∂ i and moments but is computationally faster and can handle 
up to 10 populations. Ho w e v er, momi2 does not support continu- 
ous migration and linear change of population size. 

Even though the allele frequency spectrum is one of the most 
popular statistics for demogr a phic infer ence, it has limitations on 

how informative it can be [ 50 ]. The software moments has a sub- 
module momentsLD dedicated to demogr a phic infer ence using LD 

statistics. In general, lo w-or der 2-locus LD statistics are used in 

momentsLD . A new likelihood engine using momentsLD is the first 
engine in GADMA that does not use AFS-based statistics. 

Ov er all, GADMA2 now provides a choice of 4 likelihood engines,
and we encour a ge the community to extend this list. 

A new engine for demographic history 

representation 

During demogr a phic infer ence, GADMA pr ovides differ ent textual 
and visual r epr esentations of the current best demogr a phic his- 
tory, such as generated Python code for all available likelihood en- 
gines or picture with visualized demogr a phic history. Recentl y, a 
new Python package named demes [ 51 ] appeared to allow standard 

human-readable descriptions of demographic histories. GADMA2 
includes demes as an engine to generate native descriptions and 

plots of demogr a phic histories, whic h was only possible before us- 
ing the moments or momi2 engine. Figure 2 shows the examples of 
visual r epr esentations of demogr a phic history using demes . 

Performance comparison of GADMA2 engines 

We compare 4 likelihood engines supported by GADMA2 on 2 
simulated datasets of fruit flies and orangutans. Several demo- 
gr a phic models ar e used. Their description is pr ovided in the 
erformance test of GADMA2 engines section of Materials and 

ethods. 
The sim ulated par ameter v alues of D. melanogaster population

istory and their estimations inferred by engines in GADMA2 are
resented in Table 2 and Supplementary Tables S7, S8, and S9
or DR OS-NOMIG, DR OS-MIG, DR OS-STRUCT-NOMIG. and DR OS-
TRUCT-MIG models corr espondingl y. The mean time of 1 log-
ikelihood e v aluation and the mean number of e v aluations av er-
 ged ov er infer ence runs ar e r eported in Supplementary Tables
9 and S10. 

Estimations of orangutan history model parameters and 

heir ground-truth values are available in Supplementary Ta- 
les S14, S15, and S16 and Table 3 for ORAN-NOMIG , ORAN-MIG ,
RAN-STR UCT-NOMIG, and ORAN-STR UCT-MIG models , respec- 

iv el y. The r esults of par ameter estimations using momi2 for mod-
ls with 0, 1, 3, and 7 pulse migrations are presented in Table 4 . The
v er a ge time of 1 log-likelihood e v aluation and the mean number
f e v aluations for used models and engines ar e r eported in Sup-
lementary Tables S19 and S20. 

Belo w w e pr esent our gener al conclusions about the r esults.
 more detailed comparison is available in section S2 of the Sup-
lementary Materials. 

ruit fly demographic history 

 ar ameter v alues for models DR OS-NOMIG and DR OS-MIG that
lign with the ground truth are inferred accurately by all tested
ikelihood engines. Best estimations are obtained for the DROS- 
OMIG model using the momi2 engine . T he bottleneck Euro-
ean population size is a ppr oximated most accur atel y by the
omentsLD engine. Result histories for model DROS-MIG have 
orse values of log-likelihood than histories for the DROS-NOMIG 

odel. Since DROS-NOMIG and DROS-MIG models are nested,
his indicates optimization failur e. Ne v ertheless, they ar e able
o catch general history and low migration rates . T hus , based
n these results, it is possible to assume population isolation
nd use further models without migrations for more accurate 
stimations. 

We observ e inter esting r esults for the misspecified models with
tructure (2, 1). In the case of the DROS-STRUCT-NOMIG model,
he ground-truth history of D. melanogaster is accur atel y a ppr oxi-

ated by moments and momentsLD engines onl y. The 2-epoc h his-
ory of the European population is a ppr oximated by exponen-
ial growth with a rate that differs between engines (Supplemen-
ary Fig. S12). The a ppr oximation made using the moments en-
ine aligns more closely with the actual history in terms of the
ean population size and coalescent time, while the a ppr oxima-

ion from momentsLD is more accurate in terms of harmonic mean
opulation size (section S2.1.1 of the Supplementary Materials).
e note that the momentsLD engine also is able to provide similar

istory for the model DROS-STRUCT-MIG with migrations. How- 
 v er, ∂ a ∂ i, momi2 , and moments for both models ar e hinder ed by
he se v er e local optim um and wer e not able to ac hie v e a global
olution within 8 GADMA2 runs . T he alternative history is able to
atch the European population history and low migration rates,
et it does not reflect the instantaneous expansion of the ances-
ral population, and the parameter value for the African popula-
ion size hits the upper bound. Using models with African popu-
ation size fixed to the ancestral population size after expansion
elps to overcome the local optimum and achieve history similar
o the ground truth (section S2.1.2 of the Supplementary Materi- 
ls, Supplementary Tables S11 and S12). 
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Table 2: The demogr a phic par ameters of Drosophila melanogaster history without migration (DROS-NOMIG model) inferred with different 
engines in GADMA2. Ground truth includes the parameter values from Li and Stephan [ 27 ] used in simulation po w ered b y stdpopsim [ 25 ]. 
Log-likelihood values are not comparable between different engines 

∂ a ∂ i moments momi2 momentsLD 

Log-likelihood Ground truth −2,808 −1,101 −53,489,812 −268 

P ar ameter 
N anc 1,720,600 1,598,851 1,580,074 1,724,622 1,243,096 
N AFR 8,603,000 8,421,135 7,949,903 8,679,000 7,963,770 
N EUP 0 2,200 21,999 16,158 439 2,013 
N EUP 1,075,000 1,082,115 1,008,276 1,008,970 1,102,340 
T AFR (gen.) 600,000 603,933 560,015 597,487 715,948 
T split (gen.) 158,000 173,658 162,631 159,205 153,248 
T EUP (gen.) 154,600 137,587 136,450 158,503 149,942 

N anc , size of the ancestral population; N AFR , size of the African population after expansion; N EUP 0 , European bottleneck population size after divergence; N EUP , modern 
size of the European population; T AFR , time of African size expansion; T split , time of div er gence; T EUP , time of European expansion. 

Table 3: The demogr a phic par ameters of or angutan history with migr ation for structur e (1, 1) (ORAN-STRUCT-MIG model) inferr ed with 

different engines in GADMA2. Ground truth includes the simulated parameter values that were obtained from the original study by 
Locke et al. [ 30 ]. Momi2 engine was excluded as it does not support contin uous migrations. Log-lik elihood v alues ar e not compar able 
between different engines 

∂ a ∂ i moments momentsLD 

Log-likelihood Ground truth −1,220 −1,106 −53 

P ar ameters 
N anc 17,934 17,925 17,854 17,685 
N Bor _ split 10,617 10,432 10,498 10,529 
N Sum _ split 7,317 7,492 7,355 7,155 
N Bor 8,805 exp 9,282 exp 8,892 exp 8,592 exp 

N Sum 37,661 exp 39,343 exp 37,443 exp 36,740 exp 

m Bor − Sum ( × 10 −5 ) 0.66 0.67 0.67 0.69 
m Sum − Bor ( × 10 −5 ) 1.10 1.07 1.09 1.13 
T split (gen.) 20,157 20,812 20,183 19,869 

N anc , size of the ancestral population; N Bor _ split , size of Pongo pygmaeus at split; N Sum _ split , size of Pongo abelii at split; N Bor , modern size of Pongo pygmaeus ; N Sum , modern 
size of Pongo abelii ; m Bor − Sum , migration rate from Pongo pygmaeus to Pongo abelii ; m Sum − Bor , migration rate from Pongo abelii to Pongo pygmaeus ; T split , time of div er gence. 
exp Exponential growth. 

Table 4: The demogr a phic par ameters of or angutan histories without migr ation and with pulse migr ations inferr ed using the momi2 
engine in GADMA2. In ORAN-PULSE ∗ models, the time interval after divergence is divided into equal parts, and pulse migrations are 
integrated between them. The inferred parameters show convergence to true values with an increase in pulse migration number. Ground 

truth includes the simulated parameter values obtained from the original study by Locke et al. [ 30 ] 

Model ORAN- 

Ground truth NOMIG STRUCT-NOMIG PULSE1 PULSE3 PULSE7 

Number of pulse migrations 0 (continuous) 0 0 1 3 7 
Log-likelihood −48,541,453 −48,545,934 −48,437,315 −48,391,684 −48,377,617 
P ar ameters 
N anc 17,934 19,331 19,086 19,220 18,461 17,997 
N Bor _ split 10,617 6,187 8,453 8,731 8,715 10,086 
N Sum _ split 7,317 7,719 11,668 4,165 5,412 6,409 
N Bor 8,805 10,663 8,453 9,631 9,640 8,768 
N Sum 37,661 54,184 49,595 59,929 43,123 38,030 
m Bor − Sum 0.66 × 10 −5 0 0 0.065 0.057 0.025 
m Sum − Bor 1.10 × 10 −5 0 0 0.206 0.084 0.036 
T split (gen.) 20,157 11,270 11,668 16,211 20,086 20,809 

N anc , size of ancestral population; N Bor _ split , size of Pongo pygmaeus at split; N Sum _ split , size of Pongo abelii at split; N Bor , size of Pongo pygmaeus after exponential decline; 
N Sum , size of Pongo abelii after exponential size c hange; m Bor − Sum , migr ation r ate fr om P ongo pygmaeus to P ongo abelii ; m Sum − Bor , migr ation r ate fr om Pongo abelii to 
Pongo pygmaeus ; T split , time of div er gence in generations. 
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r angutan demogr aphic history 

n the case of the orangutan simulated dataset, all 4 engines pro-
ide similar demogr a phic histories for the ORAN-NOMIG model
ithout migrations . T he pr edicted par ameters ar e almost identi-
al for ∂ a ∂ i, moments , and momi2 , whic h ar e AFS-based engines.
stimations for the modern sizes of populations are greater than
he actual values used for the sim ulation. Mor eov er, the time of
iv er gence is estimated to be lo w er: ∼12,000 vs. ground truth
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of ∼20,000. These discrepancies between predicted and simu- 
lated par ameter v alues for the model ORAN-NOMIG could be ex- 
plained by the fact that the model is oversimplified and lacks 
migration. 

Model ORAN-MIG aligns corr ectl y with the history used for data 
simulation. All tested engines provide estimations close to the 
sim ulated par ameter v alues for the ORAN-MIG model. 

The result demographic parameters for the ORAN-STRUCT- 
NOMIG model are close to the estimations obtained for the ORAN- 
NOMIG model. The population size dynamics are correctly in- 
ferred to be exponential for ∂ a ∂ i and momentsLD engines. Ho w ever,
momi2 and moments predict the constant size of the Bornean pop- 
ulation. Although constant size a ppr oximates the Bornean popu- 
lation history r elativ el y w ell, w e demonstrate that our result is a 
consequence of the following model restriction. The model ORAN- 
STRUCT-NOMIG obliges the sum of Sumatran and Bornean pop- 
ulation sizes after div er gence to equal the ancestral population 

size. Ground-truth history follows this rule, but it is not fulfilled 

by the estimations inferred for the ORAN-NOMIG model. We ad- 
ditionally test the ORAN-NOMIG model with the same restriction 

on population sizes for momi2 and moments engines . T he best ob- 
tained scenarios have a worse log-likelihood value than histories 
with constant size of the Bornean population obtained for the 
ORAN-STRUCT-NOMIG model (section S2.2 of the Supplementary 
Materials). 

Mor eov er, we r emov e the restriction on population sizes for the 
ORAN-STRUCT-NOMIG model and infer parameters for the new 

modified model using moments and momi2 engines . T he history re- 
ceived for momi2 engine is similar to those obtained for the ORAN- 
NOMIG model, and the history of Bornean population is estimated 

corr ectl y by the exponential dynamic. Howe v er, e v en though the 
moments engine also assumes exponential size change for the 
Bornean population, it a ppr oximates the exponential gr owth of 
Sumatran population size by a linear dynamic. Yet the history 
with linear a ppr oximation is similar to other histories obtained 

by moments for models ORAN-NOMIG and ORAN-STRUCT-NOMIG 

without migr ation. Furthermor e, we ensur e that suc h a model 
without the restriction but with linear size change is considered 

better than the result history for the ORAN-NOMIG model not 
only by the moments engine but also by ∂ a ∂ i and momentsLD (sec- 
tion S2.2 of the Supplementary Materials). T hus , we ha v e observ ed 

that model misspecifications like absence of migrations may lead 

to confusion between exponential and linear dynamics, but the 
results will still reflect the ground-truth history. 

The original demogr a phic history of or angutan species used for 
data simulation is accurately reconstructed by ∂ a ∂ i, moments , and 

momentsLD engines within the ORAN-STR UCT-MIG model. P opu- 
lation size dynamics are inferred to be exponential for all tested 

engines . T he parameters and values of log-likelihood are similar 
to the results for the ORAN-MIG model. 

Finall y, we anal yze momi2 engine performance for additional 
model ORAN-PULSE ∗ with pulse e v ents (Table 4 ). Pulse migra- 
tion rates inferred by momi2 differ significantly from continuous 
rates used in the simulation. Ho w ever, it is important to note that 
pulse migr ation r ates cannot be dir ectl y compar ed to continu- 
ous migr ation r ates. As the number of pulse e v ents incr eases,
we expect the rates to decrease, and it is supported by our re- 
sults . For example , the migr ation r ate fr om Bornean or angutans 
to Sumatr an or angutans ( m Bor − Sum 

) is inferr ed to be equal to 0.65 
for model ORAN-PULSE1 with 1 pulse migration, 0.057 for model 
ORAN-PULSE3 with 3 pulses, and 0.025 for model ORAN-PULSE7 
with 7 pulse e v ents. It is crucial that other parameters converge 
to the simulated parameter values with an increased number 
f pulse e v ents. Along these lines, population div er gence time is
stimated to be ∼11,000 generations for models ORAN-NOMIG 

nd ORAN-STRUCT-NOMIG, ∼16,000 generations for the model 
RAN-PULSE1, and ∼20,000 for models ORAN-PULSE3 and ORAN- 
ULSE7. The latter is close to the value of 20,157 used in the sim-
lation. P ar ameter estimations for model ORAN-PULSE7 with 7
ulse migrations are the most accurate among tested models. We
ssume the increase in pulse e v ents number will lead to more
ccurate estimations yet require more computational resources.
 hus , continuous migration is not supported in the momi2 engine
ut, to some degree, could be replaced by se v er al pulse migr ation
 v ents. 

sage case: inference of inbreeding coefficients 

e use GADMA2 to r epr oduce demogr a phic infer ence fr om Blis-
hak et al. [ 22 ] for datasets of American pumas ( P. concolor ) and do-
esticated cabbage ( B. oleracea var. capitata ). Blischak et al. [ 22 ] per-

ormed the demogr a phic infer ence for 2 models without (model
) and with inbreeding (model 2) using ∂ a ∂ i’s optimization ap-
r oac hes. 

First, we run GADMA2 with the ∂ a ∂ i engine and the same pa-
ameter bounds as in Blischak et al. [ 22 ] and compare the results
f 100 repeats with the results obtained by ∂ a ∂ i’s optimization
echniques . T he result statistics , such as mean number of eval-
ations, mean execution time, and mean and best values of log-

ikelihood, ar e pr esented in Supplementary Tables S21 and S22 for
merican pumas and Supplementary Tables S26 and S27 for do-
esticated cabbage . T hey demonstrate that on a verage , a single
ADMA2 run provides better and more stable results than a single

un of ∂ a ∂ i’s optimization within 100 repeats. Ho w ever, when op-
imization from ∂ a ∂ i is restarted several times in order to match
he computational costs of GADMA2, the r esults ar e not so con-
istent. In case of American puma populations, final av er a ge and
est log-likelihood values for GADMA2 are better than for ∂ a ∂ i’s
ptimization with restarts. For domesticated cabbage inference,
ptimization from ∂ a ∂ i with r estarts attains better av er a ge r esults
han GADMA2. Yet number of restarts required to cover GADMA2
omputational costs differs a lot between datasets and models 
nd is always unknown in practice. 

Se v er al par ameters of the r esult demogr a phic histories ob-
ained during first GADMA2 inference for both datasets received 

alues close to their upper or lo w er bounds. In order to overcome
his limitation, we perform another inference with wider bounds 
or parameter values and observe more reliable demographic pa- 
ameters . T he final values of the parameters and their CIs are pre-
ented in Supplementary Table S25 for American pumas and Sup-
lementary Table S30 for domesticated cabbage. Uncertainty es- 
imates for CI e v aluation ar e consistent acr oss differ ent step sizes
nd are presented in Supplementary Tables S23 and S24 for Amer-

can pumas and in Supplementary Tables S28 and S29 for domes-
icated cabbage . T he visual r epr esentations of demogr a phic his-
ories using demes can be found in Fig. 5 for American pumas and
n Fig. 6 for domesticated cabbage. 

merican puma demographic history 

he best demogr a phic histories obtained with GADMA2 have bet-
er values of log-likelihood ( −452,492.70 vs. −453,003.05 for model
 and −316,115.56 vs. −318,058.08 for model 2) than those re-
orted in Blischak et al. [ 22 ]. Similar values of population sizes
re obtained except for the size of the Florida population, which
s estimated to be 860 and 374 individuals for model 1 and model
, r espectiv el y, compar ed to the 1,200 and 1,600 individuals esti-
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Figure 5: Demogr a phic histories for Texas and Florida populations of 
American puma inferred with GADMA2. Figures are generated with the 
demes pac ka ge [ 51 ]. Time is pr esented on a log scale. 

Figure 6: Demogr a phic histories for a single population of domesticated 
cabba ge inferr ed with GADMA2. Figur es ar e gener ated with the demes 
pac ka ge. In both models, the time of the most recent epoch is estimated 
to be small. 
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ated by Blischak et al. [ 22 ]. Time of div er gence is estimated as
,800 years ago for model 1 and as 1,800 for model 2. Inbreeding
oefficients for model 2 are reported to be slightly higher than for
he same model in Blischak et al. [ 22 ]: 0.453 for the Texas popula-
ion and 0.628 for the Florida population. The Godambe-adjusted
ikelihood ratio test (LRT) statistic is 2,634.18 ( P = ∼0.0; Coffman
t al. [ 42 ]), indicating that the model with inbreeding better de-
cribes data. 

omesticated cabbage demographic history 

he best demogr a phic histories obtained with GADMA2 for the
omesticated cabbage population have better log-likelihood val-
es ( −24,137.34 vs. −24,330.40 for model 1 and −4,267.32 vs.
4,281.14 for model 2) than those r eceiv ed in Blisc hak et al. [ 22 ].
alues for the population sizes in the first and second epochs are

nferred similar to the results from Blischak et al. [ 22 ]. Ho w ever,
he population size estimation for the most recent epoch in our re-
ults is lo w er (10 vs. 592 individuals) for model 1 without inbreed-
ng and higher (174,960,000 vs. 215,000 individuals) for model 2
ith inbreeding than estimates obtained by ∂ a ∂ i in [ 22 ]. The time
uration of the epoch is also smaller for both models than esti-
ated pr e viousl y. In the case of model 1, the time parameter is

ery close to zero. The likelihood ratio test sho w ed that the model
ith inbreeding better describes the data than the model without

nbreeding (LRT statistic = 126.59, P = ∼0.0; Coffman et al. [ 42 ]). 

onclusions 

ADMA2 is an extension of GADMA. It features an impr ov ed ge-
etic algorithm, a more flexible automatic model construction
etup, and 2 additional demogr a phic likelihood engines. We show-
ased GADMA2 by comparing different likelihood engines for 2
imulated datasets with various demographic models, includ-
ng misspecified ones . Furthermore , we applied GADMA2 to infer
emogr a phic histories for 2 empirical datasets of inbred species,
eporting updated parameters. 

To impr ov e the genetic algorithm, we r an hyper par ameter op-
imization po w ered b y SMAC. We observ ed that discr ete hyper-
arameters might hinder hyperparameter optimization, requir-

ng m uc h mor e iter ations . Because of this , we manuall y pic ked
 combinations of the discr ete hyper par ameters, running SMAC-
ased optimization of the remaining continuous ones for each
xed combination. We compared the set of optimal solutions on
arious datasets for 3 AFS-based likelihood engines of GADMA2:
 a ∂ i, moments , and momi2 . We included the configuration that
erformed best when av er a ged acr oss all likelihood engines as
ADMA2’s new genetic algorithm. It is worth noting, howe v er, that

here was no one configuration that performed best for all of the
ikelihood engines sim ultaneousl y. We thus pr opose intr oducing
ngine-specific genetic algorithm configurations as a valuable di-
 ection for futur e work. Another pr ospectiv e dir ection is popula-
ion count-specific configurations (i.e., making the optimization of
ADMA different for 1, 2, and 3 populations). An important point
ere is that log-likelihoods for different datasets with a fixed pop-
lation count are more comparable to each other. This could help
MAC’s heuristic target function better reflect the real multiobjec-
ive goal and thus improve its hyperparameter optimization per-
ormance. 

GADMA’s automatic model construction setup was impr ov ed
o allow forbidding specific migrations or making them symmet-
ic, as well as restricting the admissible types of population size
ynamics . Moreo ver, inference of selection and inbreeding coeffi-
ients was made possible in GADMA2. We note that the a ppr oac h
ncluded in GADMA2 for inference of the selection and dominance
ates is limited and can provide only simplified estimations. In
rder to perform more accurate inference of selection, other ap-
r oac hes should be used [ 52 ]. 

Two new demographic likelihood engines, momi2 and mo-
entsLD , wer e incor por ated into GADMA2. The former is based

n a different mathematical model than ∂ a ∂ i and moments and
s computationally faster than them, but it does not support con-
inuous migrations and linear population size growth. The latter
s the first engine in GADMA2 that does not use allele frequency
pectrum data for demogr a phic infer ence and relies on linkage
isequilibrium statistics instead. Furthermore, the new package
emes was incor por ated into GADMA2 as a r epr esentation engine
roviding textual and visual descriptions of demogr a phic histo-
ies. 

We analyzed the accuracy of GADMA2’s demogr a phic likeli-
ood engines on 2 simulated datasets: the dataset of fruit fly
opulations and the dataset of orangutan species. We used dif-
er ent demogr a phic models, including models with structures.
ome of these models align with the ground truth, while some are
isspecified due to various simplifications. Similar performance
as observ ed ov er all engines for the models that align with the
round truth. In this case, inferred demographic histories were
lose to the ground truth, and the types of population size dy-
amics were correctly recovered for models with structures. 

Demogr a phic infer ence with the misspecified models demon-
tr ated inter esting phenomena. For the misspecified models with
tructure and the fruit fly dataset, all the AFS-based engines were
tuck at the same local optimum. Ho w ever, the resulting demo-
r a phic histories wer e still able to giv e some insights about the
tudied populations . T he new LD-based engine momentsLD per-
ormed consider abl y better than the AFS-based engines. For the
rangutan dataset, both the AFS-based engines and momentsLD
erformed well. All slight discrepancies between estimated and
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gr ound-truth v alues ar e consequences of models’ restrictions 
and misspecifications. It was found that sometimes exponential 
growth of population size could be misconstrued as linear growth 

with a similar rate for misspecified models that do not include 
migr ation e v ents. Although the momi2 engine does not support 
continuous migr ations r equir ed to accur atel y model the gr ound 

truth, it performs well in a ppr oximating these with a number of 
pulse migrations. Ho w ever, this approach is limited because larger 
numbers of pulse migrations increase computation time. 

GADMA2 gr eatl y simplifies performing suc h comparisons, the 
in-de pth stud y of whic h seems a pr ospectiv e work dir ection. 

We r epr oduced the demogr a phic infer ence setup of Blisc hak 
et al. [ 22 ] for the datasets of American pumas and domesticated 

cabba ge. We compar ed performance of the full y ∂ a ∂ i-based infer- 
ence to GADMA2. GADMA2 attained higher log-likelihoods with 

lo w er variance across different runs than a single ∂ a ∂ i optimiza- 
tion. GADMA2’s run times, ho w e v er, ar e consider abl y longer than 

∂ a ∂ i’s, to the extent that ∂ a ∂ i’s optimization can sometimes yield 

better results when restarted multiple times to match the com- 
putational costs of GADMA2. Ho w e v er, it may be difficult to deter- 
mine the number of restarts needed, while GADMA2’s automatic 
termination makes for a simpler and, ar guabl y, mor e r eliable user 
experience. 

Finally, we found updated parameters for models, both with 

and without inbreeding, for the datasets of American pumas and 

domesticated cabba ge fr om Blisc hak et al. [ 22 ]. For each dataset,
the best demogr a phic histories include inbreeding. Our results,
ho w e v er, demonstr ate v ery br oad CIs for some model par ameters.
The wide CIs for the population size of domesticated cabbage dur- 
ing the most r ecent epoc h can be explained by the fact that epoch 

length was inferred to be small, and very recent events are diffi- 
cult to investigate with the ∂ a ∂ i engine. Ho w e v er, the same r esults
for the size of the Florida puma population and the population 

div er gence time ar e difficult to explain. We only tested the demo- 
gr a phic models fr om Blisc hak et al. [ 22 ]; ne w models, ho w e v er, can
be built based on our results. 

GADMA2 extends the GADMA that has already shown itself 
as po w erful and efficient softw ar e for the infer ence of complex 
demogr a phic histories fr om genetic data. With its ne w a pplica- 
tion pr ogr amming interface, GADMA2 can be easil y impr ov ed fur- 
ther by integrating new likelihood engines, new optimization al- 
gorithms, and automatic model construction routines. 

Availability of Source Code and 

Requirements 

GADMA2 is fr eel y av ailable fr om GitHub via the link https://gith 

ub.com/ctlab/GADMA and can be easily installed via Pip or Bio- 
Conda. Detailed documentation is located on the website [ 53 ] 
and includes a user man ual, read y-to-use examples, and a sec- 
tion about the Application Pr ogr amming Interface (API). API en- 
ables an opportunity to use GADMA2 as a Python pac ka ge and 

allows its optimization algorithms to be applied to any general 
optimization problem. An example of such usage is demonstrated 

for Rosenbrook function [ 54 ] optimization and is provided in the 
documentation. 

� Project name: GADMA 

� Version: 2.0.0 
� Pr oject homepa ge: https://github.com/ctlab/GADMA 

� Documentation: https://gadma.readthedocs.io 
� RRID: RRID:SCR _ 017680 
� biotoolsID: biotools:GADMA 
� Operating system(s): Platform independent 
� Pr ogr amming langua ge: Python 

� Other r equir ements: Python3.6 or higher, other r equir ements
ar e av ailable within the documentation 

� License: GNU GPL v3 

dditional Files 

upplementary Fig. S1. The model of the demogr a phic history
nd naming convention of the example dataset from the deminf
ata v1.0.0 pac ka ge. 
upplementary Fig. S2. Conv er gence plots for 6 genetic algorithm
onfigurations using the moments engine on 4 training datasets: (1)
he default genetic algorithm from the initial version of GADMA
nd (2–6) configurations obtained during attempts 2 to 6 of hy-
er par ameter optimization with SMAC. The abscissa presents the

og-likelihood e v aluation number; the ordinate r efers to the dis-
ance to the optimal value of log-likelihood. Solid lines correspond
o median conv er gence ov er 128 runs and shado w ed ar eas ar e
anges between first (0.25) and third (0.75) quartiles . T he vertical
ashed black line refers to the number of evaluations used to stop
 genetic algorithm in SMAC. The default configuration (red) and
 configur ations fr om attempt 2 (gr een) and attempt 6 (blue) were
ompared in terms of convergence on a greater number of itera-
ions . T he configuration from attempt 2 shows faster convergence
n first iterations, and the configuration from attempt 6 turns out
o have better conv er gence at the last iterations on 3 of 4 datasets.
upplementary Fig. S3. Conv er gence plots for 6 genetic algorithm
onfigurations using the moments engine on 6 test datasets: (1) the
efault genetic algorithm from the initial version of GADMA and

2–6) configurations obtained during attempts 2 to 6 of hyperpa-
ameter optimization with SMAC. The default configuration (red) 
nd 2 configurations from attempt 2 (green) and attempt 6 (blue)
er e compar ed in terms of conv er gence on a gr eater number of

terations . T he configuration from attempt 2 shows faster con-
 er gence on first iterations, and the configuration from attempt
 turns out to have better conv er gence at the last iterations on 2
f 6 datasets. 
upplementary Fig. S4. Boxplots of the e v entual log-likelihoods
nd number of e v aluations r equir ed for full runs of the genetic
lgorithm with 6 configurations using the moments engine. For 
ach dataset, 2 plots are presented: (1) the top plot shows distri-
ution of 128 resulting log-likelihood values; (2) the bottom plot
orresponds to the distribution of the e v aluations’ number r e-
uired for genetic algorithms to terminate. Orange line on boxplot
efers to the median value; green triangle demonstrates the mean
alue. 
upplementary F ig. S5. F or each dataset, the performance of the
e w configur ations fr om attempts 2 to 6 is categorized as better,
orse, or incomparable to the performance of the default config-
ration when using the moments engine . T he histogram illustrates
he count of datasets falling into each category for each configu-
ation. Performance is considered better if both the median value
nd both quartiles of log-likelihoods are higher than those of the
efault configur ation. Conv ersel y, if both the median and quar-
iles are lo w er, the dataset is categorized as worse . Otherwise , the
omparison is considered similar or undefined. 
upplementary Fig. S6. Conv er gence plots for 6 genetic algorithm
onfigurations using the ∂ a ∂ i engine on 4 training datasets: (1) the
efault genetic algorithm from the initial version of GADMA and

2–6) configurations obtained during attempts 2 to 6 of hyperpa-
ameter optimization with SMAC. The abscissa presents the log- 
ikelihood e v aluation number; the ordinate r efers to the distance

https://github.com/ctlab/GADMA
https://github.com/ctlab/GADMA
https://gadma.readthedocs.io
https://scicrunch.org/resolver/RRID:SCR_017680
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o the optimal value of the log-likelihood. Solid lines correspond
o median conv er gence ov er 128 runs, and shado w ed areas are
anges between first (0.25) and third (0.75) quartiles . T he vertical
ashed black line refers to the number of evaluations used to stop
 genetic algorithm in SMAC. 
upplementary Fig. S7. Conv er gence plots for 6 genetic algorithm
onfigurations on 6 test datasets: (1) the default genetic algorithm
rom the initial version of GADMA (red) and (2–6) configurations
btained during attempts 2 to 6 of hyper par ameter optimization
ith SMAC. 
upplementary Fig. S8. Conv er gence plots for 6 genetic algorithm
onfigurations using the momi2 engine on 4 training datasets: (1)
he default genetic algorithm from the initial version of GADMA
red) and (2–6) configurations obtained during attempts 2 to 6 of
yper par ameter optimization with SMAC. The abscissa presents
he log-likelihood e v aluation number; the ordinate r efers to the
istance to the optimal value of log-likelihood. Solid lines corre-
pond to median conv er gence ov er 128 runs, and shado w ed areas
r e r anges betw een first (0.25) and thir d (0.75) quartiles . T he ver-
ical dashed black line refers to the number of e v aluations used
o stop a genetic algorithm in SMAC. 
upplementary Fig. S9. Conv er gence plots for 6 genetic algo-
ithm configurations on 4 test datasets: (1) default genetic algo-
ithm from the initial version of GADMA (red) and (2–6) config-
rations obtained during attempts 2 to 6 of hyper par ameter op-
imization with SMAC. Two datasets ( 2_ButAllA_3_McC , 2_But-
ynB2_5_McC ) were excluded as they are not supported by the
omi2 engine. 
upplementary Fig. S10. Boxplots of the e v entual log-likelihoods
nd number of e v aluations r equir ed for full runs of the genetic
lgorithm with 6 configurations using the momi2 engine. For each
ataset, 2 plots are presented: (1) the top plot shows distribution
f 128 resulting log-likelihood values; (2) the bottom plot corre-
ponds to the distribution of the e v aluations’ number r equir ed for
enetic algorithms to terminate. Orange line on boxplot refers to
he median value; green triangle demonstrates the mean value. 
upplementary F ig. S11. F or each dataset, the performance of the
e w configur ations fr om attempts 2 to 6 is categorized as better,
orse, or incomparable to the performance of the default config-
ration when using the momi2 engine . T he histogr am illustr ates
he count of datasets falling into each category for each configu-
ation. Performance is considered better if both the median value
nd both quartiles of log-likelihoods are higher than those of the
efault configur ation. Conv ersel y, if both the median and quar-
iles are lo w er, the dataset is categorized as worse . Otherwise , the
omparison is considered similar or undefined. 
upplementary Fig. S12. Comparison of the original demogr a phic
istory of Drosophila melanogaster and a ppr oximations for the
R OS-STRUCT-NOMIG model b y moments and moments LD engines.
upplementary Table S1. Short descriptions of GADMA genetic
lgorithm (GA) hyper par ameters. 
upplementary Table S2. Mean log-likelihood values (128 runs)
or final configurations of 6 SMAC attempts on training and test
atasets. Genetic algorithm was stopped at the same number of
 v aluations used in SMAC. Log-likelihood was e v aluated with the
oments engine. Mean cost value on training datasets presented in

he table is SMAC score that was used by the SMAC intensification
r ocedur e. For attempt 1, SMAC failed to find a better configura-
ion than the default one. Best mean values are marked bold. 
upplementary Table S3. Mean log-likelihood values (128 runs)
or final configurations of 6 SMAC attempts on training and test
atasets using the ∂ a ∂ i simulation engine. Genetic algorithm was
topped at the same number of e v aluations used in SMAC. Best
ean values are marked bold. Log-likelihood values and results
re similar to the moments engine. 
upplementary Table S4. Mean log-likelihood values (128 runs)
or final configurations of 6 SMAC attempts on training and test
atasets using the momi2 simulation engine. Genetic algorithm
as stopped at the same number of e v aluations used in SMAC.

wo test datasets ( 2_ButAllA_3_McC , 2_ButSynB2_5_McC ) were
xcluded as the y lack ed sequence length required for the momi2
ngine . Moreo ver, the momi2 engine does not support continuous
igrations, and size of ancestral population could not be inferred

mplicitly as for ∂ a ∂ i and moments . T hus , number of parameters
n datasets for momi2 differs from moments and ∂ a ∂ i. Best mean
 alues ar e marked bold. 
upplementary Table S5. Models of Drosophila melanogaster pop-
lations’ history and GADMA2’s likelihood engines used for per-

ormance comparison. If engine was used to infer model parame-
ers, then notation “+ ” is set between the engine and model; oth-
rwise, notation “–” is specified. Engine momi2 is not compared for
he models with migration as it does not support continuous mi-
rations. 
upplementary Table S6. The demogr a phic par ameters of
rosophila melanogaster history with migration (DROS-MIG model)

nferred with different engines in GADMA2. Ground truth includes
he par ameter v alues fr om the original study by Li and Stephan
2006) used in simulation po w ered b y stdpopsim (Adrion et al.,
020). Engine momi2 is excluded as it does not support continu-
us migrations. Log-likelihood values are not comparable between
ifferent engines. 
upplementary Table S7. The demogr a phic par ameters of
rosophila melanogaster history without migration for structure (2,
) (DROS-STRUCT-NOMIG model) inferred with different engines
n GADMA2. Ground truth includes the parameter values from the
riginal study by Li and Stephan (2006) used in simulation pow-
red by stdpopsim (Adrion et al., 2020). Log-likelihood values are
ot comparable between different engines. 
upplementary Table S8. The demogr a phic par ameters of
rosophila melanogaster history with migration for structure (2,
) (DROS-STRUCT-MIG model) inferred with different engines in
ADMA2. Ground truth includes the parameter values from the
riginal study by Li and Stephan (2006) used in simulation pow-
red by stdpopsim (Adrion et al., 2020). Engine momi2 is excluded
s it does not support continuous migrations. Log-likelihood val-
es are not comparable between different engines. 
upplementary Table S9. Comparison of av er a ge times for log-

ikelihood e v aluation between used GADMA2’s likelihood engines
nd models of Drosophila melanogaster history. For each model
nd likelihood engine, mean value and standard deviation are re-
orted. 
upplementary Table S10. Mean number of log-likelihood
 v aluations r equir ed for demogr a phic infer ence av er a ged ov er
 GADMA2 runs for each engine and model of Drosophila
elanogaster history. 
upplementary Table S11. The demogr a phic par ameters of
rosophila melanogaster history without migration for structure (2,
) and restriction on population sizes of ancestral and African
opulations (DROS-STRUCT-NOMIG-AFR model) inferred with dif-
erent AFS-based engines in GADMA2. Ground truth includes the
ar ameter v alues fr om the original article by Li and Stephan

2006) used in simulation po w ered b y stdpopsim (Adrion et al.,
020). Log-likelihood values are not comparable between differ-
nt engines. 
upplementary Table S12. The demogr a phic par ameters of
rosophila melanogaster history without migration for structure (2,
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1) and restrictions on instantaneous expansion of ancestral pop- 
ulation and on population sizes of ancestral and African popula- 
tions (DROS-STRUCT-NOMIG-AFR-ANC model) inferred with dif- 
ferent AFS-based engines in GADMA2. Ground truth includes the 
par ameter v alues fr om the original study by Li and Stephan (2006) 
used in simulation po w ered b y stdpopsim (Adrion et al., 2020).
Log-likelihood values are not comparable between different en- 
gines. 
Supplementary Table S13. Models of orangutan’s history and 

GADMA2’s likelihood engines used for performance comparison. 
If engine was used to infer model parameters, then notation “+ ”
is set between these engine and model; otherwise, notation “−”
is specified. Engine momi2 is not compared for the models with 

migration as it does not support continuous migrations. 
Supplementary Table S14. The demogr a phic par ameters of 
orangutan history without migration (ORAN-NOMIG model) in- 
ferr ed with differ ent engines in GADMA2. Gr ound truth includes 
the sim ulated par ameter v alues that wer e obtained fr om the orig- 
inal study by Locke et al. (2011). 
Supplementary Table S15. The demogr a phic par ameters of 
orangutan history with migration (ORAN-MIG model) inferred 

with different engines in GADMA2. Ground truth includes the 
sim ulated par ameter v alues that wer e obtained fr om the original 
stud y by Lock e et al. (2011). Momi2 engine was excluded as it does 
not support continuous migrations. 
Supplementary Table S16. The demogr a phic par ameters of 
orangutan history without migration for structure (1, 1) (ORAN- 
STRUCT-NOMIG model) inferred with different engines in 

GADMA2. Ground truth includes the simulated parameter values 
that were obtained from the original study by Locke et al. (2011).
Log-likelihood values are not comparable between different en- 
gines. 
Supplementary Table S17. The demogr a phic par ameters of 
orangutan history for several models without migrations inferred 

using the moments engine in GADMA2. Models differ by set of dy- 
namics used for inference and by the restriction on population 

sizes. Model follows the restriction (marked by + ) when the sum of 
Bornean and Sumatran population sizes is obliged to equal the an- 
cestral population size before the split. Two histories are also pre- 
sented in another table that are indicated in the last r ow. Gr ound 

truth includes the simulated parameter values that were obtained 

from the original study by Locke et al. (2011). 
Supplementary Table S18. The demogr a phic par ameters of 
orangutan history for models with linear size change of Suma- 
tran population and without migrations inferred with different 
engines in GADMA2. Ground truth includes the simulated param- 
eter values that were obtained from the original study by Locke 
et al. (2011). Momi2 engine was excluded as it does not support 
linear size change. Log-likelihood values are not comparable be- 
tween different engines. 
Supplementary Table S19. Comparison of av er a ge times for log- 
likelihood e v aluation between used GADMA2’s likelihood engines 
and models of orangutan history. For each model and likelihood 

engine, mean value and standard deviation are reported. 
Supplementary Table S20. Mean number of log-likelihood e v al- 
uations r equir ed for demogr a phic infer ence av er a ged ov er 8 
GADMA2 runs for each engine and model of orangutan history. 
Supplementary Table S21. Result statistics obtained from 100 re- 
peats of 2 of ∂ a ∂ i’s optimization techniques and GADMA2 in a case 
of the demogr a phic infer ence without inbr eeding for the Ameri- 
can Puma populations . T he reported statistics include the mean 

and standard deviation of the number of e v aluations , CPU times ,
and log-likelihoods. GADMA2 is compared with 2 of ∂ a ∂ i’s opti- 
ization techniques: single optimization and optimization with 

 ultiple r estarts. In order to matc h the number of e v aluations
ith GADMA2, the ∂ a ∂ i optimization with m ultiple r estarts has
8 r estarts. Additionall y, r esults fr om Blisc hak et al. (2020) ar e in-
luded, whic h wer e obtained using single ∂ a ∂ i optimization with
iffer ent initialization pr ocess. BFGS optimization was used as an
ptimization from ∂ a ∂ i. The results obtained from GADMA2 are
ighlighted in bold, as they ac hie v ed the best mean and best log-

ikelihood values. 
upplementary Table S22. Result statistics obtained from 100 re- 
eats of 2 of ∂ a ∂ i’s optimization techniques and GADMA2 in a
ase of the demogr a phic infer ence with inbr eeding for the Amer-
can Puma populations . T he reported statistics include the mean
nd standard deviation of the number of e v aluations , CPU times ,
nd log-likelihoods. GADMA2 is compared with 2 of ∂ a ∂ i’s opti-
ization techniques: single optimization and optimization with 

 ultiple r estarts. In order to matc h the number of e v aluations
ith GADMA2, the ∂ a ∂ i optimization with m ultiple r estarts has
6 r estarts. Additionall y, r esults fr om Blisc hak et al. (2020) ar e in-
luded, whic h wer e obtained using single ∂ a ∂ i optimization with
iffer ent initialization pr ocess. BFGS optimization was used as an
ptimization from ∂ a ∂ i. The results obtained from GADMA2 are
ighlighted in bold, as they ac hie v ed the best mean and best log-

ikelihood values. 
upplementary Ta ble S23. Log-scale standar d deviations for pa-
ameters in the model without inbreeding for American pumas 
cross a series of step sizes. 
upplementary Ta ble S24. Log-scale standar d deviations for pa-
ameters in the model with inbreeding for American pumas 
cross a series of step sizes. 
upplementary Table S25. Maxim um likelihood par ameters in- 
err ed fr om the demogr a phic models for the Texas and Florida
opulations of American puma. 
upplementary Table S26. Result statistics obtained from 100 
epeats of 2 of ∂ a ∂ i’s optimization techniques and GADMA2 in
 case of the demogr a phic infer ence without inbr eeding for the
omesticated cabbage . T he reported statistics include the mean
nd standard deviation of the number of e v aluations , CPU times ,
nd log-likelihoods. GADMA2 is compared with 2 of ∂ a ∂ i’s opti-
ization techniques: single optimization and optimization with 

 ultiple r estarts. Additionall y, r esults fr om Blisc hak et al. (2020)
r e included, whic h wer e obtained using single ∂ a ∂ i optimiza-
ion with a different initialization process. In order to match
he number of e v aluations with GADMA2, the ∂ a ∂ i optimiza-
ion with multiple restarts has 27 restarts. BOBYQA optimiza- 
ion was used as an optimization from ∂ a ∂ i. The results obtained
rom ∂ a ∂ i’s optimization with m ultiple r estarts ar e highlighted
n bold, as they ac hie v ed the best mean and best log-likelihood
alues. 
upplementary Table S27. Result statistics obtained from 100 re- 
eats of 2 of ∂ a ∂ i’s optimization techniques and GADMA2 in a
ase of the demogr a phic infer ence with inbr eeding for the do-
esticated cabbage . T he reported statistics include the mean and

tandard deviation of the number of e v aluations , CPU times , and
og-likelihoods. GADMA2 is compared with 2 of ∂ a ∂ i’s optimiza-
ion techniques: single optimization and optimization with mul- 
iple r estarts. Additionall y, r esults fr om Blisc hak et al. (2020) ar e
ncluded, whic h wer e obtained using single ∂ a ∂ i optimization with
 different initialization process. In order to match the number
f e v aluations with GADMA2, the ∂ a ∂ i optimization with multi-
le restarts has 16 restarts. BOBYQA optimization was used as
n optimization from ∂ a ∂ i. The results obtained from ∂ a ∂ i’s op-
imization with multiple restarts are highlighted in bold, as they
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c hie v ed the best mean and slightly better than GADMA2 best log-
ikelihood values. 
upplementary Ta ble S28. Log-scale standar d deviations for pa-
ameters in the model without inbreeding for domesticated cab-
a ge acr oss a series of step sizes. 
upplementary Ta ble S29. Log-scale standar d deviations for pa-
ameters in the model with inbreeding for domesticated cabbage
cross a series of step sizes. 
upplementary Table S30. Maxim um likelihood par ameters in-
err ed fr om the demogr a phic models for the domesticated cab-
age population. 

bbreviations 

FS: allele frequency spectrum; bp: base pair; CI: confidence in-
erval; Gbp: gigabase pair; LD: linkage disequilibrium. 

a ta Av ailability 

n arc hiv al copy of the code and other supporting data, also in-
luding scripts to r epr oduce the figur es, ar e av ailable via the Gi-
aScience repository, GigaDB [ 55 ]. The scripts and the results of hy-
er par ameter optimization experiments are saved in the reposi-
ory and available via the link [ 56 ]. The results of GADMA runs for
iffer ent hyper par ameter configur ations ar e stor ed as an arc hiv e
vailable in the GigaScience repository, GigaDB [ 55 ]. The results of
xperiments about inbreeding are added to the repository with
he final demogr a phic histories inferr ed in the original paper of
ADMA and are located via the link [ 57 ]. 
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