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ABSTRACT The human gut microbiome plays an important role in both health and
disease. Recent studies have demonstrated a strong influence of the gut microbiome
composition on the efficacy of cancer immunotherapy. However, available studies have
not yet succeeded in finding reliable and consistent metagenomic markers that are
associated with the response to immunotherapy. Therefore, the reanalysis of the pub-
lished data may improve our understanding of the association between the composition
of the gut microbiome and the treatment response. In this study, we focused on mela-
noma-related metagenomic data, which are more abundant than are data from other tu-
mor types. We analyzed the metagenomes of 680 stool samples from 7 studies that were
published earlier. The taxonomic and functional biomarkers were selected after comparing
the metagenomes of patients showing different treatment responses. The list of selected
biomarkers was also validated on additional metagenomic data sets that were dedicated
to the influence of fecal microbiota transplantation on the response to melanoma immu-
notherapy. According to our analysis, the resulting cross-study taxonomic biomarkers
included three bacterial species: Faecalibacterium prausnitzii, Bifidobacterium adolescentis,
and Eubacterium rectale. 101 groups of genes were identified to be functional biomarkers,
including those potentially involved in the production of immune-stimulating molecules
and metabolites. Moreover, we ranked the microbial species by the number of genes en-
coding functionally relevant biomarkers that they contained. Thus, we put together a list
of potentially the most beneficial bacteria for immunotherapy success. F. prausnitzii, E. rec-
tale, and three species of bifidobacteria stood out as the most beneficial species, even
though some useful functions were also present in other bacterial species.

IMPORTANCE In this study, we put together a list of potentially the most beneficial
bacteria that were associated with a responsiveness to melanoma immunotherapy.
Another important result of this study is the list of functional biomarkers of respon-
siveness to immunotherapy, which are dispersed among different bacterial species.
This result possibly explains the existing irregularities between studies regarding the
bacterial species that are beneficial to melanoma immunotherapy. Overall, these
findings can be utilized to issue recommendations for gut microbiome correction in
cancer immunotherapy, and the resulting list of biomarkers might serve as a good
stepping stone for the development of a diagnostic test that is aimed at predicting
patients’ responses to melanoma immunotherapy.

KEYWORDS gut microbiota, cancer immunotherapy, melanoma, metagenomics, fecal
transplantation, compositional data analysis

Over the past decades, the main cancer treatment options were surgery, ionizing
radiation, and chemotherapy. However, recently, novel approaches of treating

melanoma and other cancerous types emerged. Since these approaches are based on
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the activation of patients’ own immunities, they collectively became known as immu-
notherapy. The therapeutic effects are achieved through the administration of immune
checkpoint inhibitors (ICIs), which induce a T-lymphocyte-mediated immune response
against tumors (1). However, responses to these treatments are notoriously heteroge-
neous and nondurable. A significant number of patients fail to benefit from ICIs (2),
whereas others exhibit severe autoimmune side effects (3).

The gut microbiome takes part in metabolic reactions that are utterly important for
human health. Human studies have reported differences in the gut microbiota composi-
tions of cancer patients who exhibited different responses to immunotherapy (RI) (4–10).
Moreover, the transplantation of feces from a responder patient may modulate the out-
come of a nonresponder patient (11, 12). These experiments confirmed the crucial role
of the gut microbiome in determining the efficacy of immunotherapy. The development
of this line of research may lead not only to the creation of new diagnostic tools but
also, possibly, to new medications and treatment strategies that are aimed toward
increasing the effectiveness of immunotherapy. However, despite the large number of
studies that have been published, researchers still have not reached a consensus on the
gut microbial determinants of responsiveness to melanoma immunotherapy (RMI).
Moreover, the published meta-analyses (13, 14) do not provide a clear answer to this
question. While there is no doubt that the frequently cited objective factors, such as the
complexity of metagenomic data, technical and/or biological variations, as well as spe-
cific individual factors, partially explain the lack of consistent results, some data analysis
strategies may be better than others for revealing previously unidentified trends and
dependencies.

In this study, we identified consistent biomarkers that are associated with positive
ICIs therapy outcomes by applying compositional data analysis methods (15) to stool
metagenomic data from earlier published studies. We also focused on melanoma-
related data, as these are more abundant than are data related to other tumor types,
and we improved the accuracy of our analysis by employing the approaches that we
developed earlier, including MetaCherchant (16) and Recipient intestinE Colonization
AnalysiS Tool (RECAST) (17). As a result, consistent stool metagenomic biomarkers that
are associated with RMI were identified by comparing the stool samples of patients
who displayed different treatment responses. We also validated our findings on avail-
able data sets that were dedicated to the impact of fecal microbiota transplantation on
RMI as well as on other metagenomic data sets. Additionally, we established connec-
tions between taxonomic and functional biomarkers that allowed us to single out the
potentially most beneficial bacteria that possibly contribute to RMI and to verify the
results of previous analyses.

RESULTS
Discovery of consistent taxonomic biomarkers associated with RI. The aim of

our study was to find consistent taxonomic biomarkers that are associated with RI. Thus,
the metagenomic sequencing data of 358 stool samples from 5 studies that are available in
the NCBI database were included in the analysis: the group comparison of melanoma
patient stool samples with different RI outcomes (Frankel 2017, Gopalakrishnan 2018, and
Matson 2018; here, called the group 1 data sets; 47 responders [R] versus 55 nonresponders
[NR]; 102 metagenomes) as well as the data analysis results of the fecal microbiota trans-
plantation influence on RI (Baruch 2021 and Davar 202; here, called the group 2 data sets; 9
donors; 6 responders; 19 nonresponders; 256 metagenomes). The sequencing statistics and
other metadata that characterize the metagenomes are presented in Table S1.

The search for consistent taxonomic biomarkers that are associated with RMI was
carried out in two steps. At the first stage, the taxa of the gut metagenomes that set R
apart from NR were identified by applying the differential rankings approach via
Songbird individually for the data sets in Group 1. The top 20 taxa displaying both pos-
itive and negative differential values were selected for further analysis. The log-ratio
assessment of the selected taxa across metagenomes shows a clear, statistically
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significant difference between the R and NR groups (Fig. S1). The concatenated
Songbird-derived rankings and differentials are illustrated in Fig. 1. According to our
findings, nine bacterial species (Faecalibacterium prausnitzii, Eubacterium siraeum,
Ruminococcus bromii, Blautia wexlerae, Bacteroides ovatus, Ruminococcus bicirculans,
Barnesiella intestinihominis, Roseburia hominis, Alistipes putredinis, Bacteroides vulgatus,
and Roseburia faecis) were predictors of RMI in at least two data sets of group 1. In con-
trast, seven bacterial species were identified to be predictors of UMI: Bacteroides thetaiotao-
micron, Parasutterella excrementihominis, Adlercreutzia equolifaciens, Asaccharobacter celatus,
Proteobacteria bacterium CAG 139, Firmicutes bacterium CAG 145, and Coprococcus comes.

It is noteworthy that the data set used in the study of Frankel 2017 encompassed
patients with different treatment regimens. Nevertheless, the Songbird approach iden-
tified the species that marked the differences between the R and NR, groups regardless
of the immunotherapy protocol (Fig. S2).

The aim of analyzing the group 2 data sets was to investigate the impact of fecal micro-
biota transplantation (FMT) on RI. It should be noted that the FMT-related data are more
complex than the group comparison data (Group 1), as they usually consist of donor meta-
genomes and time series of recipient metagenomes. Therefore, the identification of bio-
markers in group 2 was carried out in two steps: (i) the detection of donor-derived
microbes in the samples of recipients and (ii) the identification of donor-derived microbial
species that colonized the recipient and were associated with the improvement of symp-
toms of melanoma after immunotherapy.

FIG 1 Species rankings and differentials generated by Songbird. Species are plotted on the x axis, and differentials describing the log-fold change in taxa
associated with RI are plotted on the y axis. Positive coefficient levels correspond to RMI, and negative levels correspond to an unresponsiveness to
melanoma immunotherapy (UMI). Two colored stars designate species associated with RMI and UMI in two data sets, and three stars designate species
associated with RMI and UMI in three data sets. Species that contain consistent biomarkers are highlighted in blue and green.
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In the first step, the diversity of donor-derived microbes in the metagenomes of the
recipients was determined using the RECAST approach. A total of at least 102 donor-
derived bacterial species were identified in each recipient. The list of the top five bacte-
ria that colonized the majority of recipients is: Eubacterium rectale, F. prausnitzii, A.
putredinis, R. faecis, and Bacteroides uniformis (Fig. S3). According to variance analysis,
the composition of donor-derived microbes was more dependent on the donor subject
rather than on RMI in both of the FMT data sets (PERMANOVA, R2 = 0.20, Padj , 0.05;
R2 = 0.07, Padj , 0.05, respectively, for Baruch 2021; R2 = 0.14, Padj , 0.001; R2 = 0.09,
Padj , 0.001 for Davar 2021; Aitchison distance, 10,000 permutations).

In the second step, Songbird was used to perform multinomial regression for the detec-
tion of donor-derived microbes that were associated with RMI. The log-ratio assessment of
the Songbird differential rankings of donor-derived microbial profiles showed a clear, statis-
tically significant difference between the R and NR groups (Fig. S4). As the analysis of the
group 1 data sets showed, the predictors of RMI included E. reclate, Acidaminococcus intes-
tini, Collinsella aerofaciens, Roseburia intestinalis, R. faecis, and F. prausnitzii. Only Prevotella
copri was consistently associated with UMI (Fig. 2). Interestingly, E. rectale was a stronger
predictor of RMI for the FMT-related data sets, in comparison to F. prausnitzii. Firmicutes
appeared to be beneficial in both data sets (maintaining a difference in the species

FIG 2 Donor-derived species rankings and differentials generated by Songbird. Microbial species are plotted on the x axis, and differentials describing the
log-fold change in taxa associated with RI are plotted on the y axis. Positive coefficient levels correspond to an association with RMI and negative levels
correspond to UMI. The colored stars designate species with positive or negative associations in both the Baruch 2021 and Davar 2021 data sets. Species
that contain consistent biomarkers are highlighted in blue and green.
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content), whereas Bacteroidetes and Actinobacteria demonstrated conflicting results in
terms of their impacts on immunotherapy efficacy. For example, Bacteroides dorei and B.
uniformis were strongly associated with RMI in the Davar 2021 data set but not in the
Baruch 2021 data set. In contrast, A. putredinis was associated with a beneficial impact on
immunotherapy in the Baruch 2021 data set but not in the Davar 2021 data set. Moreover,
Actinobacteria emerged as a significant predictor of immunotherapy outcome only in the
Baruch 2021 data set, whereas a major part of Bacteroidetes emerged as a significant pre-
dictor of RI only in the Davar 2021 data set. However, these differences may be due to tech-
nical biases that are linked to differences in DNA extraction procedures (18) but not with
biological phenomena.

The second stage of the analysis was to put together a list of consistent biomarkers
following this scheme: (i) microbial species that were associated with RMI, according to
the Songbird results in more than one data set, were added to the list; (ii) microbial
species that were associated with UMI in at least one data set were excluded from the
list of biomarkers, regardless of the number of data sets in which they were associated
with RMI. The identified taxonomic biomarkers have been associated with RMI in other
studies, which we mention in Table 1.

The resulting list of consistent taxonomic biomarkers that are associated with RMI
included 19 bacterial species: 12 Firmicutes, 4 Bacteroides, and 3 Actinobacteria. Many
major short-chain fatty acid producers, such as F. prausnitzii, R. faecis, R. hominis, R. bro-
mii, and E. rectale, were included in the list. Interestingly, F. prausnitzii was identified to
be a significant predictor of RMI in all of the data sets that were included in the analy-
sis. In addition, we found nine studies in the scientific literature that also reported the
beneficial role of F. prausnitzii in immunotherapy. All of the identified consistent taxo-
nomic biomarkers coincided with the colonizers that were identified in the FMT data
sets (Fig. S3). However, only 17 out of 19 (excluding Ruminococcus bicirculans and E. sir-
aeum) were associated with RMI in the FMT-related data sets. Moreover, E. reclate and
A. intestini were found to be predictive of RMI only in the FMT-related data sets. It
should also be noted that F. prausnitzii and Roseburia spp. have been identified as
cross-cohort biomarkers of a response to ICIs therapy in previously published meta-
analyses (13, 14), which further confirms the roles of these bacteria in producing a pos-
itive response to ICIs therapy.

TABLE 1 Consistent taxonomic biomarkers associated with RMI, resulting from the analysis of the data sets for groups 1 and 2

Species (% of samples with nonzero
relative abundance) Phyla Studies included in our analysis Other studies
Faecalibacterium prausnitzii (94) Firmicutes Frankel 2017, Gopalakrishnan 2018, Matson 2018,

Baruch 2021, Davar 2021
4, 5, 7–10, 13, 55, 56

Roseburia faecis (70) Firmicutes Gopalakrishnan 2018, Matson 2018, Baruch 2021,
Davar 2021

14

Bacteroides ovatus (96) Bacteroidetes Gopalakrishnan 2018, Matson 2018, Davar 2021 57
Bacteroides vulgatus (99) Bacteroidetes Gopalakrishnan 2018, Matson 2018, Davar 2021 24, 58
Blautia wexlerae (80) Firmicutes Frankel 2017; Matson 2019, Baruch 2021
Collinsella aerofaciens (79) Actinobacteria Matson 2018, Baruch 2021, Davar 2021 7
Eubacterium siraeum (52) Firmicutes Frankel 2017, Gopalakrishnan 2018, Matson 2018 56, 59
Roseburia hominis (71) Firmicutes Frankel 2017, Gopalakrishnan 2018, Davar 2021 14
Ruminococcus bromii (47) Firmicutes Frankel 2017; Gopalakrishnan 2018, Davar 2021 8, 60, 61
Acidaminococcus intestini (36) Firmicutes Baruch 2021, Davar 2021
Bifidobacterium adolescentis (47) Actinobacteria Matson 2019, Baruch 2021 7, 61
Bifidobacterium longum (53) Actinobacteria Matson 2019, Baruch 2021 7, 19, 62, 63
Eubacterium rectale (87) Firmicutes Baruch 2021, Davar 2021
Fusicatenibacter saccharivorans (79) Firmicutes Gopalakrishnan 2018, Baruch 2021
Parabacteroides distasonis (96) Bacteroidetes Gopalakrishnan 2018, Davar 2021 24, 64
Parabacteroides merdae (89) Bacteroidetes Matson 2018, Davar 2021 7, 61
Phascolarctobacterium faecium (59) Firmicutes Gopalakrishnan 2018, Davar 2021
Ruminococcus bicirculans (46) Firmicutes Frankel 2017, Gopalakrishnan 2018
Ruthenibacterium lactatiformans (95) Firmicutes Matson 2018, Davar 2021 64
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Consistent biomarkers associated with UMI were identified by applying the same meth-
odology. The resulting list included 4 Firmicutes, 2 Bacteroides, 2 Actinobacteria, and 1
Proteobacterium; the species were Bacteroides thetaiotaomicron, Adlercreutzia equolifaciens,
Asaccharobacter celatus, Bacteroides cellulosilyticus, Coprococcus comes, Dialister invisus,
Firmicutes bacterium CAG 145, Oscillibacter sp CAG 241, and Proteobacteria bacterium
CAG 139. However, only B. thetaiotaomicron was predictive of UMI in 4 data sets (Frankel
2017, Gopalakrishnan 2018, Matson 2018, Davar 2021). The rest of the bacteria from this
list showed consistent results in only two data sets. Concurrently, in the group 2 data sets,
there were no consistent biomarkers of UMI among the analyzed studies. Only P. copri dis-
played predictive power of UMI in both Baruch 2021 and Davar 2021. However, as it also
displayed predictive power of RMI in Frankel 2017, it was excluded from the list.

Validation of consistent taxonomic biomarkers using group comparison of
metagenomics data sets. To test the identified consistent taxonomic biomarkers, we
applied group comparison to the metagenomic data sets that were published by Spencer
2021 and Lee 2022. There were a total of 322 metagenomes that were divided into 164
responders and 158 nonresponders. We compared the list of consistent biomarkers by
using the Songbird differential values in Spencer 2021 and Lee 2022. Microbial species
that exhibited contradictory results in at least one of the additional data sets were
excluded from further analysis. As a result, only four bacterial species, namely, B. adoles-
centis, F. prausnitzii, E. rectale, and P. merdae, were found to be consistent biomarkers of
RMI in additional data sets. One species, namely, A. equolifaciens, was found to be a bio-
marker of UMI. After further verification, P. merdae and A. equolifaciens were removed
from this list, as their differential values at least in one of the additional data sets
were,0.1, and they did not exhibit differences between the R and NR groups in the log-
ratio analysis. Thus, from the list of early identified cross-study taxonomic biomarkers,
only B. adolescentis, F. prausnitzii, and E. rectale were reproducible in the Spencer 2021
and Lee 2022 data sets. It is noteworthy that only F. prausnitzii was found to be a predic-
tor of RMI in all seven of the data sets that were included in the analysis and that E. rectale
and B. adolescentis were consistent in four of the data sets. Next, we carried out a log-ratio
assessment of B. adolescentis, F. prausnitzii, and E. rectale across metagenomes in addi-
tional data sets. Since representative biomarkers of UMI were not identified, only taxa
with differential values of,20.5 were selected as a set of denominators.

Today, we know that many species of bifidobacteria, by stimulating the immune
system, can improve the response to ICIs therapy (19, 20). However, in our study, only
B. adolescentis displayed strong predictive power of a RMI, whereas another bifidobac-
teria species was associated with UMI. To demonstrate these effects, we added B. lon-
gum to the log-ratio assessment, and it was found to be a reproducible predictor of
RMI in the group 1 and 2 data sets but not in the additional data sets. As a result, the
log-ratio assessment of the selected taxa across metagenomes showed a clear, statisti-
cally significant difference between the R and NR groups in both the Spencer 2021 and
Lee 2022 data sets. The results are presented in Fig. 3. The Songbird differential values
across the identified taxonomic biomarkers and data sets are presented in Table S2.

Discovery of consistent functional biomarkers associated with RI. The discovery
of consistent functional biomarkers that are associated with RMI was achieved by employ-
ing the same approach as that used in the taxonomic analysis. The top 200 functional fea-
tures displaying positive or negative differential values were selected for further analysis.
The log-ratio assessment of the selected KEGG orthology groups (KOG) of the analyzed
metagenomes or donor-derived microbial profiles for the additional data sets demon-
strated a clear, statistically significant difference between the R and NR groups (Wilcoxon
rank-sum test, P, 0.001). A total of 140 KOGs that were associated with RMI in more than
one data set were identified as a result of analyzing the group 1 and 2 data sets, whereas
57 KOGs were associated with poor RMI. After the validation of the results using the
Spencer 2021 and Lee 2022 data sets, 101 KOGs were associated with RMI, and 20 KOGs
were associated with poor RMI (Table S3). Among the list of consistent functional bio-
markers of RMI were KOGs that are involved in polysaccharide metabolism (K16148,
K16147, K01210, K01218, K01136) as well as in peptidoglycan (K07284, K05364, K12554)
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and fatty acid biosynthesis (K11533, K11263). It should be noted that the gluABCD gluta-
mate uptake system (K10005, K10006, K10007, K10008) and the phosphotransferase (PTS)
encoded by the gfrABCD operon (K19506, K19507, K19508, K19509), which leads to the
utilization of Maillard reaction products (MRPs), such as fructoselysine/glucoselysine, are
also predictors of RMI. Among other significant predictors of RMI were gene groups that
are involved in the biosynthesis of cofactors, such as cobalamin (K13542) and ubiquinone
(K03688). Moreover, the KOGs corresponding to sporulation (K18955, K06383, K06297,
K06313, K06330, K06413) and motility/secretion systems (K02653, K02398, K02417,
K02278) were also associated with RMI. Concurrently, among other functional biomarkers
of UMI were KOGs derived from pathogenic bacteria, such as KOGs that are involved in
aerobactin biosynthesis (K03894, K03895, K03896, K03897).

Identification of the relation between taxonomic and functional biomarkers of
RI. Using the MetaCharchant and Kraken2 tools, we studied the relationship between the
taxonomic results and the consistent functional biomarkers described above (Table S4).
According to the results presented in Fig. 4A, 45 Firmicutes, 18 Actinobacteria, 17

FIG 3 Validation of the consistent taxonomic biomarkers associated with RMI or UMI using additional metagenomic data sets. (A and B) Feature rankings
and differentials generated by Songbird. Microbial species are plotted on the x axis, and differentials describing the log-fold change in features with regard
to RI are plotted on the y axis. The validated consistent taxonomic biomarkers of RMI are highlighted in blue. Taxonomic features with differential values of
,20.5 that were selected as a set of denominators are highlighted in green. (C and D) Boxplots of the log ratios of the selected features are highlighted
in color in panels A and B. The log-ratios statistical assessment, which was performed using the Wilcoxon rank-sum test, shows a clear significant difference
between the R (responders) and NR (nonresponders) groups. P values are shown in the figure. The plots in panels A and C correspond to the Spencer 2018
data set, and the plots in panels B and D correspond to the Lee 2022 data set.
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FIG 4 Taxonomic affiliation of consistent functional biomarkers of RI. (A and B) The number of KOGs linked to each bacterial
species, as identified by Kraken 2. The bacterial species are plotted on the x axis, and the numbers of KOGs are plotted on the

(Continued on next page)

Stool Biomarkers Associated with Immunotherapy Response mSystems

Month YYYY Volume XX Issue XX 10.1128/msystems.01023-22 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 1

6 
M

ar
ch

 2
02

3 
by

 8
9.

21
6.

97
.9

1.

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.01023-22


Proteobacteria, 11 Bacteroidetes, 3 Euryarchaeota, 1 Synergistetes, and 1 Verrucomicrobia
bacteria were linked to functional biomarkers that are associated with RMI. It is noteworthy
that 9 out of 19 phyla (approximately 47%) have been included in the group 1 and 2 data
sets taxonomic biomarkers that are associated with RMI, which are presented in Table 1.
According to a variance analysis, different bacterial phyla were linked to different bio-
markers (PERMANOVA, R2 = 0.12, P, 0.001; Bray-Curtis dissimilarity, 10,000 permutations).
The number of KOGs associated with RMI was highest in the species belonging to
Actinobacteria (Wilcoxon rank-sum test, Padj , 0.05). Firmicutes, Bacteroidetes, and
Proteobacteria were least linked to the selected gene groups, even though the results
were not statistically significant (Wilcoxon rank-sum test, Padj . 0.05). The top five bacteria
that contained KOGs that were most strongly linked to RMI were: F. prausnitzii, B. longum,
B. adolescentis, Bifidobacterium bifidum, and E. rectale. It is noteworthy that this list is par-
tially similar to the list of consistent taxonomic biomarkers that resulted from the analysis
of the Spencer 2021 and Lee 2022 data sets (F. prausnitzii, B. adolescentis, and E. rectale)
(Fig. 3). Interestingly, a combination of F. prausnitzii-linked KOGs and any of the bifidobac-
teria B. longum, B. adolescentis and B. bifidum was seen in approximately 85% of the cases
of consistent functional biomarkers of RMI.

In contrast, 8 Proteobacteria, 3 Firmicutes, and 2 Bacteroidetes bacteria were associated
with functional biomarkers of UMI. The top five bacterial species that contained the high-
est numbers of functions associated with biomarkers of UMI were the opportunistic and
potential opportunistic species Escherichia coli, Enterobacter cloacae, Citrobacter freundii,
Klebsiella pneumoniae, and Raoultella ornithinolytica (Fig. 4B). All of the identified aerobac-
tin biosynthesis KOGs belonged to E. coli and E. cloacae. It is noteworthy that we identified
bacterial species, including Escherichia coli, E. cloacae, B. thetaiotaomicron, and others, that
are linked to functional biomarkers of both RMI and UMI.

We also carried out a network analysis of the relationship between the taxonomic results
and the consistent functional biomarkers. The bacterial phyla that differed in their content of
functional biomarkers of RMI were also identified (Fig. 4C). Interestingly, F. prausnitzii occu-
pied an intermediate position between the Firmicutes and Actinobacteria clusters, and it was
linked to the specific KOGs of both of the bacterial phyla. The functional biomarkers of UMI
were predominantly linked to Proteobacteria and did not form distinct clusters (Fig. 4D).

DISCUSSION

The international scientific community is being actively engaged in studying the
influence of the human intestinal microbiota on the efficacy of cancer immunotherapy.
However, despite the large number of published studies, researchers still cannot find
reliable and consistent gut microbial determinants of RMI. Thus, the development and
validation of new tools of metagenomic analysis and reanalysis of the published data
may help us reveal new links between the composition of the gut microbiome and the
efficacy of immunotherapy. In this study, we focused on melanoma-related metage-
nomic data due to its abundance, in comparison with data related to other tumor
types. Using the Songbird tool for compositional data analysis (21), we analyzed the
gut metagenomes from seven published studies and identified three bacterial species
as cross-study taxonomic biomarkers that are associated with RI: F. prausnitzii, B. ado-
lescentis, and E. rectale. Nevertheless, only F. prausnitzii was consistent across the data
sets that were included in the analysis. It is noteworthy that the identified biomarkers
were congruent with the results of other published studies (Table 1). Moreover, despite
the fact that the Frankel 2017 and Lee 2022 data sets included patients who were

FIG 4 Legend (Continued)
y axis. The color bars indicate the phyla of the bacteria. The species that have been selected as consistent taxonomic biomarkers in
the group 1 and group 2 data sets are highlighted in blue and green. The taxonomic biomarkers associated with RMI and validated
on the Spencer 2021 and Lee 2022 data sets are marked by blue stars. (C and D) The networks show taxonomic affiliations
belonging to validated positive functional biomarkers. Triangles correspond to bacterial phyla, and circles correspond to KOGs. The
widths of the circles correspond to the numbers of related KOGs. The plots in panels A and C correspond to the validated
consistent functional biomarkers that are associated with RMI, whereas the plots in panels B and D correspond to UMI.
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exposed to different treatment regimens (anti-PD1, anti-CTLA4, or a combination of
both), the identified biomarkers still described the difference between the R and NR
patient groups well. Many have suggested that F. prausnitzii, E. rectale, and bifidobacte-
ria exhibit immunomodulatory potential in relation to both healthy people and COVID-
19 patients (22, 23). We assume that there are universal stool metagenomic biomarkers
that are reflective of the state of the immune system. Nonetheless, extensive clinical
studies are needed to confirm these hypotheses.

Furthermore, we identified consistent functional biomarkers of RMI that are related
to polysaccharide metabolism, peptidoglycan and fatty acid biosynthesis, the gluABCD
glutamate uptake system, fructoselysine/glucoselysine utilization by gfrABCD PTS, as
well as groups of genes that are involved in the biosynthesis of cofactors, such as co-
balamin and ubiquinone. Interestingly, the groups of genes related to sporulation and
motility/secretion systems were predictive of RMI. Today, we know that the gut micro-
bial community promotes a variety of digestive metabolic functions, some of which
may be associated with the improved functioning of the immune system and RMI. The
identified biomarkers are corroborated by the results of other published findings
regarding the molecular mechanisms involved in RI. For example, the increased intake
of plant polysaccharides improves RMI (10, 24). Moreover, F. prausnitzii, E. rectale, and
B. adolescentis, which were pinpointed as taxonomic biomarkers, are major producers
of butyrate and other short-chain fatty acids. Gut microbiome-derived SCFAs are nec-
essary for fine-tuning the body’s metabolism and cytotoxic immunity, both of which
improve the efficacy of immunotherapy (25–27). Moreover, gene groups that are
involved in sporulation and motility can be characterized as pattern recognition recep-
tor (PRR) ligands, and they are involved in the modulation of host immunity and in the
efficacy of immunotherapy (20, 28–31). Another finding of this study that may be rele-
vant to the modulation of RMI by gut microbes is that the gut bacteria may affect food
safety by tweaking the generation of Maillard reaction products (32). We determined
that the gfrABCD PTS system, which is used by bacteria as a fructoselysine/glucosoly-
sine disposal system, can be utilized for the prediction of immunotherapy success. This
discovery fits well in our paradigm, as fructoselysine may be used by intestinal bacteria
as an additional substrate for butyrate production (33), which thereby boosts the pro-
biotic component of the microbiome and increases the body’s receptivity of cancer
immunotherapy.

Using our previously developed computational pipeline (16), we ranked the bacterial
species by the numbers of consistent functional biomarkers contained in them. In total, 96
bacterial species were linked, to some extent, to KOG predictors of RMI. Based on these
results, we hypothesized that the irregularities between previous studies might be
explained by the fact that beneficial functions are distributed among different bacterial
species. Only F. prausnitzii contained approximately 70% of the identified functions that
are beneficial to immunotherapy success. Moreover, multiple studies demonstrated the
crucial role of F. prausnitzii in determining the body’s RI (Table 1). Thus, F. prausnitzii
appears to be a key determinant of immunotherapy success. Interestingly, the combina-
tion of F. prausnitzii-linked KOGs with any of the bifidobacteria B. longum, B. adolescentis,
or B. bifidum covered approximately 85% of the identified consistent biomarkers of suc-
cessful immunotherapy. It is possible that rational design of probiotics must take into
account the symbiotic bonds between beneficial bacteria, as they can lead to synergetic
beneficial effects, overall. Studies have already shown that the combination of F. prausnitzii
and bifidobacteria improves butyrate production, growth, and gut colonization (34, 35).
Although there is no doubt that bifidobacteria exert a wide range of positive properties
related to human immunity, according to our results, only B. adolescentis was a predictor
of successful immunotherapy. Concurrently, despite the large number of immunotherapy-
related beneficial KOGs that were harbored by B. longum, the results of the validation of
the taxonomic biomarkers for this species were not reproducible. Moreover, B. bifidum was
not identified to be a consistent taxonomic predictor, despite being associated with a
large number of beneficial KOGs. We conjecture that these results might be explained by
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the fact that the beneficial properties exhibited by bifidobacteria toward immuno-
therapy are strain-specific (20) or can be manifested via interactions with other intes-
tinal microorganisms.

In addition to searching for biomarkers of RMI, we set out to establish which distinctive
features, other than a low abundance of beneficial microbes, are unique to NRs. However,
we did not find any representative taxonomic biomarkers in NRs. Interestingly, the “Anna
Karenina principle” seems to be applicable to animal microbiomes in the sense that, unlike
balanced microbiomes, which seem to have common features, dysbiotic microbiomes
have little to none, paralleling Leo Tolstoy’s dictum that “All happy families look alike; each
unhappy family is unhappy in its own way.” (36). Nevertheless, we identified functional
biomarkers of UMI, such as the KOGs that are involved in aerobactin biosynthesis. As
reported by many studies, the production of aerobactin is a virulence factor that has been
found in intestinal pathogens. We identified some links between aerobactin biosynthesis
and both E. coli and E. cloacae. It is noteworthy that E. coli has also been linked to a large
number of functional biomarkers that are characteristic of RMI. We conjecture that E. coli
strains can be both beneficial or opportunistic in regard to melanoma immunotherapy. In
addition, we could not conclude which group B. thetaiotaomicron belongs to, as it did not
display any distinctive pattern between the compared data sets. This is congruent with
the literature, which states that the role of B. thetaiotaomicron in modulating immunother-
apy outcome is ambiguous. On the one hand, the administration of B. thetaiotaomicron
improved RMI in mice (28). On the other hand, B. thetaiotaomicron was suggested as a de-
terminant of UMI (8). B. thetaiotaomicron has also been blamed for exacerbating enteric
infections (37, 38). Thus, it is feasible that ascribing a concrete status to B. thetaiotaomicron
depends to a large extent on the presence of pathogenic bacteria in the metagenome.

The impact of fecal microbiota transplantation on RI was strongly dependent on the
donor’s microbiome. However, the most beneficial donated samples did not work alike for
all of the patients. In other words, the FMT immunomodulatory success depends on both
the characteristics of the donor microbiome and the recipient’s intestinal environment (or
other unknown factors). Moreover, species that have been linked to successful therapy
have also colonized NRs. It is possible that the engraftment of a broad array of donor-
derived species is a side effect of FMT (39). At the same time, unique, hidden aspects of
the donor microbiome, such as molecular structures that are secreted by specific strains or
certain bacteriophages, can account for RMI (20, 40). Also, other factors, such as the micro-
bial load (which cannot be assessed using metagenomic data) in the donor stool samples
and/or in the recipient’s mucosa (41), may be a strong determinant of the success of FMT.
Interestingly, the most efficient microbial colonizers, namely, F. prausnitzii and E. rectale,
were also associated the most with beneficial KOGs, and they were included in the list of
validated consistent taxonomic biomarkers. One possible explanation is that the adaptive
evolutionary processes that led to the selection of the most beneficial species for the host
also led to the selection of the most competitive microbial symbionts.

Conclusions. Today, it is widely known that the gut microbiome exerts many positive
effects on the functioning of the host organism, ranging from metabolic functions to the
influence of microbial-derived molecular structures on cell-specific receptors. Since metage-
nomic sequencing is not suitable for quantifying the fecal microbial load, we can assume that
the general microbiome signature detected by human cells is degraded in nonresponders, in
comparison to responders, due to infection or some other reason, and that the identified bio-
markers are indicators of the microbiome structure degradation. Moreover, the specific char-
acteristics of the Rs’ intestinal communities, which are transferable from one person to
another, may determine the effectiveness of immunotherapy. To put it briefly, the true bio-
logical nature of the observed phenomena has not yet been established. Nevertheless, some
useful conclusions can be drawn. For example, the inclusion of digestive fibers and probiotic
strains of bifidobacteria into treatment regimens will definitely improve the chances of suc-
cessful immunotherapy. However, the question of which, among commercial probiotics, is
the most effective remains open. In addition, it is likely that taking steps toward enhancing in-
testinal infection control will also improve the efficacy of ICIs.
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MATERIALS ANDMETHODS
Metagenomic data. Sequencing data from samples of gut metagenomes of melanoma patients

who displayed different responses to ICIs were collected before any interventions from three published
studies (5, 7, 8). These data were used to analyze the associations between taxonomic or functional
metagenomic profiles and the responsiveness of patients to immunotherapy. Additional data that
showed the impact of FMT on immunotherapy (11, 12) were used to validate the identified biomarkers.
To validate the selected biomarkers, two additional metagenomic data sets were used (10, 14). In total,
680 metagenomic stool samples were used in the study, of which 374 metagenomes were from mela-
noma patients with RMI (responders group, R) and 306 metagenomes were from melanoma patients
who were unresponsive to immunotherapy (nonresponders group, NR). The characteristics of the meta-
genomic data sets that were used in the study are presented in Table 2.

Data analysis strategy. Raw metagenomic data were downloaded from the NCBI/EBI public data
repositories, using the SRA-Toolkit’s fastq-dump tool (42). The assessment of read quality and the filter-
ing out of poor quality reads were carried out using the FastQC software package (https://github.com/s
-andrews/FastQC). Technical sequences and bases with a quality of lower than a 30 Phred score were
trimmed using Trimmomatic (43). Human sequences were removed from the metagenomes using
bbmap (44) and the GRCh37 human genome version. The described preprocessing computational steps
that were applied to the metagenomics reads were implemented in the Assnake metagenomics pipeline
(https://github.com/ASSNAKE). The donor-derived reads of post-FMT stool metagenomes in FMT-related
data sets were identified using the RECAST algorithm (17). The taxonomic and functional profiles of the
processed stool metagenomes or the donor-derived metagenomic reads were obtained using the
MetaPhlAn3 (45) and HUMAnN2 approaches (46) along with the KEGG database (47).

The identification of consistent taxonomic and functional biomarkers that are associated with RMI
was performed in two steps. For the first step, using the taxonomic and functional profiles of stool meta-
genomes or donor-derived reads (for the FMT-related data), microbial species with increased or
decreased abundance were identified in patients who were responsive to immunotherapy using the
Songbird (21) and Qurro (48) tools that are implemented in the QIIME2 framework (49). The second step
was the creation of a list of consistent biomarkers, which was done by following this methodology: (i)
microbial species that were associated with RMI in more than one data set were added to the list; (ii) mi-
crobial species that were associated with UMI in at least one data set were excluded from the list of bio-
markers, regardless of the numbers of data sets in which they were associated with a positive outcome.
The specific UMI biomarkers were identified in a similar way.

The search for links between taxonomic and functional biomarkers was carried out as follows. The
identification of taxonomic affiliations and the reconstruction of the metagenomic context of the func-
tional biomarkers was performed using the MetaCherchant tool (16). Unitigs with a length of .1,000 bp
were selected for subsequent taxonomic annotation using Kraken 2 (50) and a precomputed database
(https://lomanlab.github.io/mockcommunity/mc_databases.html). The resulting data were processed
using the ggraph package for GNU/R (51).

Additional statistical analyses and visualizations were carried out using the vegan package (52),
ggplot2 library, and standard statistical techniques that are implemented in GNU/R. The PERMANOVA
(adonis function of the vegan package), Bray-Curtis dissimilarity (52), and Aitchison distance (53, 54)
were used for measuring the distances and dissimilarities in the comparisons of the taxonomy profiles
of the read categories and functional biomarkers content. The Benjamini-Hochberg procedure was used
to correct for multiple hypothesis testing.

Data availability. In this study, we used data from open sources, which are available at the NCBI
and EBI Sequence Read Archives under the BioProject accession numbers PRJNA397906, PRJEB22893,
PRJNA399742, PRJNA678737, PRJNA672867, PRJNA770295, and PRJEB43119. All of the results of the pro-
ject are presented in the article text and in the additional materials.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 0.2 MB.
FIG S2, TIF file, 0.1 MB.
FIG S3, TIF file, 1.7 MB.

TABLE 2 Characteristics of the metagenomic data sets that were used in the study

Dataset Immunotherapy type Individuals/Samples
Responders/
Nonresponders

Reads per metagenome
(mean± SD), mln

Sequencing platform
(read length, bp)

Frankel 2017 anti-PD1/anti-CTLA4 39/39 19/20 36.86 10.6 Illumina (100)
Gopalakrishnan 2018 anti-PD1 25/25 14/11 15.96 4.0 Illumina (100)
Matson 2018 anti-PD1 38/38 14/24 39.76 16.9 Illumina (150)
Baruch 2021 anti-PD1 10/42 3/7 15.86 5.5 Illumina (150)
Davar 2021 anti-PD1 15/214 3/12 11.16 3.8 Illumina (150)
Spencer 2021 anti-PD1 158/158 100/58 12.56 7.8 Illumina (100 to 150)
Lee 2022 anti-PD1/anti-CTLA4 164/164 100/64 24.76 18.3 Illumina (150)
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FIG S4, TIF file, 0.1 MB.
TABLE S1, XLSX file, 0.02 MB.
TABLE S2, XLSX file, 0.01 MB.
TABLE S3, XLSX file, 0.02 MB.
TABLE S4, XLSX file, 0.8 MB.
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