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Systemic metabolic depletion of gut microbiome
undermines responsiveness to melanoma
immunotherapy
Natalia V Zakharevich1 , Maxim D Morozov1 , Vera A Kanaeva1,3 , Mikhail S Filippov4 , Tatyana I Zyubko4 ,
Artem B Ivanov1,2 , Vladimir I Ulyantsev2 , Ksenia M Klimina1 , Evgenii I Olekhnovich1

Immunotherapy has proven to be a boon for patients battling
metastatic melanoma, significantly improving their clinical con-
dition and overall quality of life. A compelling link between the
composition of the gut microbiome and the efficacy of immu-
notherapy has been established in both animal models and
human patients. However, the precise biological mechanisms by
which gut microbes influence treatment outcomes remain poorly
understood. Using a robust dataset of 680 fecal metagenomes
from melanoma patients, a detailed catalog of metagenome-
assembled genomes (MAGs) was constructed to explore the
compositional and functional properties of the gut microbiome.
Our study uncovered significant findings that deepen the un-
derstanding of the intricate relationship between gut microbes
and the efficacy of melanoma immunotherapy. In particular, we
discovered the specific metagenomic profile of patients with
favorable treatment outcomes, characterized by a prevalence of
MAGs with increased overall metabolic potential and proficiency
in polysaccharide utilization, along with those responsible for
cobalamin and amino acid production. Furthermore, our inves-
tigation of the biosynthetic pathways of short-chain fatty acids,
known for their immunomodulatory role, revealed a differential
abundance of these pathways among the specific MAGs. Among
others, the cobalamin-dependent Wood–Ljungdahl pathway of
acetate synthesis was directly associated with responsiveness to
melanoma immunotherapy.
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Introduction

Cutaneous melanoma is a type of skin cancer that has become
increasingly common in recent decades. It is the 17th most common
cancer worldwide, the 13th most common cancer in men, and the
15thmost common cancer in women, according to the World Cancer

Research Fund (https://www.wcrf.org). Despite the increasing
incidence of the disease, survival and quality of life for patients
have been significantly improved by novel approaches and
tailored drugs (Switzer et al, 2022). Immune checkpoint inhibitors
(ICTs) have made significant advances, resulting in durable
remissions in more than 50% of patients with metastatic mel-
anoma (Larkin et al, 2015). However, treatment can be associated
with side effects such as dermatitis, colitis, hepatitis, antibody-
related thyroid dysfunction, and in some cases, pneumonia
(Horvat et al, 2015; Roy & Trinchieri, 2017; Wolchok et al, 2017;
Robert et al, 2019). Studies are underway to identify specific host
or tumor characteristics that may serve as predictors of patient
response to ICT therapy, thereby improving immunotherapy
outcomes.

The influence of the human gut microbiota on the efficacy of
immunotherapy against malignant tumors is being studied ex-
tensively by the international scientific community. Studies in
animal models have provided initial evidence that gut microbes
may play a role in shaping the effects of anticancer therapies and in
the development of antitumor immunity (Iida et al, 2013; Viaud et al,
2013; Sivan et al, 2015; Vétizou et al, 2015). These findings have
subsequently been validated in studies of melanoma patients
undergoing immunotherapy (Chaput et al, 2017; Frankel et al, 2017;
Routy et al, 2018). Notably, the intestine microbiome has been
found to be associated not only with the ICT response but also with
the incidence of related side effects (Dubin et al, 2016; Li et al, 2019).
These important findings described above have been further
substantiated by fecal microbiota transplantation (FMT) into
gnotobiotic mice (Gopalakrishnan et al, 2018; Matson et al, 2018;
Lam et al, 2021) and clinical patients (Baruch et al, 2021; Davar et al,
2021; Routy et al, 2023).

The results outlined above have not only demonstrated how
specific characteristics of the human gut microbiota influence
immunotherapy outcomes but have also opened up the intriguing
possibility of their transferability. The phenomenon of transmission
of the responder phenotype by “fecal matter” suggests the
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potential involvement of specific microbial species, a combination
of species, or microbial derivatives that can be isolated and used as
adjuvants to enhance the efficacy of immunotherapeutic treat-
ments. However, despite the large number of published studies and
meta-analyses on this topic, the global scientific community still
struggles with an incomplete understanding of the complex bio-
logical mechanisms underlying gut microbial regulation of the
immune system in the context of cancer immunotherapy (Limeta
et al, 2020; Lee et al, 2022).

Recently, Olekhnovich et al (2023) identified consistent stool
metagenomic biomarkers associated with melanoma immuno-
therapy efficacy using community-accepted methods of taxonomic
and functional annotation. In contrast, this study used advanced
bioinformatics techniques such as genome-resolved metagenomics,
strain profiling, comparative genomics, andmetabolic reconstruction
to refine and develop the proposed concepts. Together, these
efforts aim to better understand the biological mechanisms un-
derlying the influence of the gut microbiota on the regulation of
antitumor immunity.

Results

Assembly of a nonredundant catalog of metagenome-assembled
genomes (MAGs) using the melanoma patient metagenomes

In this study, we analyze patient fecal metagenomes collected
before ICT administration from five previous studies (Frankel et al,
2017; Gopalakrishnan et al, 2018; Matson et al, 2018; Spencer et al,
2021; Lee et al, 2022). In addition, we present data demonstrating the
positive impact of FMT on immunotherapy treatment outcomes
(Baruch et al, 2021; Davar et al, 2021). In summary, this analysis
includes stool metagenomes from a total of 680 individuals,
consisting of 374 responders (R) and 306 nonresponders (NR) from
seven studies. A comprehensive overview of the general charac-
teristics of the dataset can be found in our previously published
article (Olekhnovich et al, 2023). Fig 1 shows a schematic of the data
analysis workflow.

MAGs were constructed for each sample using the provided data.
This resulted in a total of 12,449 MAGs, which were then dereplicated
to 98% average nucleotide identity. The final set consisted of
1,422 nonredundant MAGs with quality metrics of 93.3 ± 6.4 com-
pleteness and 1.6 ± 2.0 contamination. Fig S1 shows additional
metrics such as N50 and assembly length. The resulting catalog
conforms to the quality standards established by the Genomic
Standards Consortium criteria (Bowers et al, 2017), with 1,006 high-
quality (~71%) and 416 medium-quality (~29%) MAGs. According to
the Genome Taxonomy Database classifications, the list of MAGs
contains a total of 1,416 bacterial and six archaeal genomes,
grouped into 13 different phyla. The most abundant phyla are
Firmicutes (902 MAGs, ~63%), Actinobacteria (261 MAGs, ~18%),
Bacteroidetes (148 MAGs, ~10%), Proteobacteria (59 MAGs, ~4%), and
others (52 MAGs, ~4%). Table S1 provides overall assembly statistics
and taxonomic annotation for the MAGs catalog. Fig 2A shows the
phylogenetic tree constructed using 1,422 MAGs sequences.

The following step in our analysis involved obtaining relative
abundance profiles of MAGs through the inStrain approach (Olm
et al, 2021). The mapping results are presented in Table S2 and Fig
2B. The obtained profiles were used to assess changes of routine
microbial ecology metrics, including alpha and beta diversity. In
summary, alpha diversity statistically significantly depended on the
dataset variable but not on the immunotherapy outcome (ANOVA,
adj. P < 0.001), whereas beta diversity depended on both examined
variables (PERMANOVA, adj. P < 0.001; Table S3 and Fig 2C–E). To
identify the specific bacteria specifically associated with respon-
siveness to immunotherapy, a data analysis strategy outlined in the
following section was pursued.

Identify differences between R and NR groups across datasets

Metagenomic data are compositional, which limits the use of
statistical methods directly without any transformations (Gloor
et al, 2017). A number of methods have been developed to rep-
resent compositional data in the Cartesian space. In this study, the
following data analysis protocol was used. The Songbird approach
was used to generate the ranking differentials, which describes the
log fold change of MAGs’ relative abundance associated with the
immunotherapy outcome variable (Morton et al, 2019). It is im-
portant to note that Songbird does not provide P-values, making it
difficult to estimate statistical significance using this approach
alone. To overcome this limitation, the Qurro method (Fedarko et al,
2020) was used to calculate log ratios based on the ranked MAG
features. Standard statistical methods can estimate obtained log
ratio values that condense multiple microbial traits into a single
value, similar to alpha diversity indexes. This method is useful for
ecological modeling and statistical evaluation because it allows
results to be interpreted in the context of ecological “states”
without requiring separate hypothesis tests for each MAG. It also
allows tracking changes in microbiome composition over time,
facilitating the identification of transitions between different
ecological “states.”

Identification of MAGs associated with immunotherapy out-
comes was performed according to the outlined protocol. Using the
Songbird approach, genomes associated with R andNR groups were
identified individually for each dataset. MAGs with an absolute
differential value > 0.3 were selected for further analysis. As a result,
the log ratios of the relative abundances of the selected MAGs
showed a clear statistically significant difference (see Fig 3A; Wil-
coxon rank-sum test adj. P < 0.001). Furthermore, the calculated log
ratios depended on both response and donor variables in the FMT
datasets (Table S3; ANOVA, adj. P < 0.01). FMT responders showed
statistically significant increased log ratio values compared with
FMT nonresponders, which was confirmed by additional statistical
tests (Wilcoxon rank-sum test Baruch et al, 2021 adj. P < 0.001, Davar
et al, 2021 adj. P < 0.001). The log ratio–based measure presented
shows the state of the microbiome in the context of immuno-
therapy and assesses the evolution of recipient samples over time
(Fig 3B). In addition, FMT responders had statistically significantly
increased log ratio values before fecal transfer compared with FMT
nonresponders. Notably, this effect was reproducible in both FMT
datasets (Wilcoxon rank-sum test, for Baruch et al, 2021 adj. P < 0.01,
for Davar et al, 2021 adj. P < 0.01).
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Discovery of consistent MAG biomarkers linked to the
immunotherapy outcome

Using the genome sets identified in the previous analysis step, a list
of 137 consistent MAG biomarkers was identified (see the Materials
and Methods section). Of these, 84 MAGs were associated with
positive immunotherapy outcomes (R biomarkers), whereas 53 were
associated with negative outcomes (NR biomarkers). These MAGs
belonged to six phyla with the following distribution: Firmicutes (38
negative, 65 positive), Bacteroidetes (7 negative, 9 positive), Actino-
bacteria (1 negative, 8 positive), Proteobacteria (5 negative, 1 positive),

Verrucomicrobiota (2 negative, 0 positive), Desulfobacterota (0 negative,
1 positive) (Table S4). Notably,fiveMAGs—including twoBifidobacterium
adolescentis, one unclassified Bifidobacterium, Gemmiger qucibialis,
and Barnesiella intestinihominis—identified as R biomarkers in six
studies. In contrast, NR biomarkers, such as Akkermansia sp004167605
and Scatavimonas sp900540275, were reproducible in no more than
four datasets. The phylogenetic tree generated by OrthoFinder using all
MAGs sequences is shown in Fig 3C. The obtained biomarker sets were
further validated using machine learning methods.

The application of machine learning models using stool meta-
genomes to predict and/or classify various human disease states

Figure 1. Data analysis workflow.
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has not yet been widely adopted in clinical practice. This may be
because of insufficient sample size for model training and the
overall complexity of the data, which is characterized by sparsity
and high inter-individual variability. In addition, combining data-
sets to improve classification quality is complicated by the “batch
effect,” that is, the classification quality on an independent dataset
not used in training is likely to be unsatisfactory. In this case of the
melanoma immunotherapy data, a random forest (RF) classifier
using MAG relative abundance values directly did not yield re-
producible predictions between datasets according to out-of-
dataset cross-validation (six datasets used for training, one used
for testing), supporting the above thesis (ROC AUC = 0.54 ± 0.17; Fig

S2A). However, using log ratios obtained using MAGs with absolute
differential values > 0.3 significantly improves prediction (633 out of
680 samples; ROC AUC = 0.91 ± 0.06, Wilcoxon rank-sum test P =
0.001; Fig S2B). Obviously, the interpretation of this model is
challenging because of its use of specific MAG features to classify
each dataset. We can assume that the objective biological differ-
ence between the R and NR groups within each dataset is described
by a different set of features, united by a similar biological meaning.
However, the practical usefulness of such a model is questionable.
Perhaps the log ratios determined on the basis of representative
sets of features common to all datasets will help to solve this
problem. It should be noted that NR biomarkers cannot be a good

Figure 2. Summary of metagenome-assembled genome (MAG) catalog assembly, taxonomic annotation, metagenomic sample mapping, and basic metagenomic
analysis.
(A) Approximate maximum likelihood phylogenetic tree generated using CheckM with 43 AA marker sequences and 1,422 MAGs assembled from 680 melanoma patient
stool metagenomes. Branches are color-coded according to bacterial or archaeal affiliation. The inner ring shows phylum-level taxonomic annotations aligned with the
phylogenetic tree, whereas the outer ring shows MAGs assembly statistics. (B)Heatmap illustrating the results of mapping metagenomic reads to the MAG catalog using
the inStrain tool. The color bars on the left indicate the datasets (1) and the response variables (2). MAGs’ presence/absence are plotted on the x-axis, whereas stool
samples are plotted on the y-axis. The presence of MAG in the samples is indicated by color: yellow—the MAG is present in the sample, black—the MAG is absent in the
sample. (C, D) Multidimensional scaling biplot showing the relative abundance profiles of MAGs in stool metagenomes from different studies (C) and with different
immunotherapy outcomes (D). Samples are represented by dots connected to the centroid. Data set and immunotherapy response variables are shown in different
colors. The color scheme corresponds to the legend of figure (B). (E) Shannon index values representing the diversity of MAG relative abundance profiles of stool
metagenomes, stratified by dataset and the immunotherapy outcome. The color scheme corresponds to the legend of Figure (B).
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choice for constructing log ratios because they cannot characterize
a meaningful number of samples (491 out of 680). Using bacterial
features with <−0.3 Songbird differential specific to each dataset

and 84 common R biomarkers allows the quality of prediction to
remain as high (630 out of 680 samples; ROC AUC = 0.89 ± 0.09,
Wilcoxon rank-sum test P = 0.71; Fig S2C). The results obtained may

Figure 3. Metagenome-assembled genome (MAG) biomarker discovery and characterization.
(A) Log ratio plots of selected feature data obtained with Songbird and Qurro software using non-fecal microbiota transplantation datasets. MAG features with a
differential value > 0.3 were selected as the numerator, whereas MAGs with a differential value < −0.3 were selected as the denominator for the log ratio calculation.
Statistical evaluation of log ratios using the Wilcoxon rank-sum test shows significant differences between the R and NR groups, with unadjusted P-values shown. All
adjusted P-values were < 0.001. (B) Log ratio plots of selected feature data obtained with Songbird and Qurro software using fecal microbiota transplantation datasets.
Log ratio values were clustered on the recipient variable and plotted according to time points: one line corresponds to one recipient. The recipient’s lines are colored
according to their affiliation with a particular donor. (C) Phylogenetic tree based on AA sequences of identified MAG biomarkers obtained with OrthoFinder. Tree branches
are color-coded according to taxonomic annotations at the phylum level. The inner ring links MAG biomarkers to the R or NR group, whereas the outer ring indicates the
dataset numbers where the biomarker was discovered. (D, E) OrthoFinder-generated phylogenetic trees based on Faecalibacterium (D) or Bifidobacterium (E) MAGs and
references. Leaf colors correspond to different genome sets, and additional bar graphs show the dataset numbers where the biomarker was found.
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indicate the presence of bacteria that are more common in R
patients but not in NR patients. We have previously shown that the
common feature of NR patients may be the presence of oppor-
tunistic species in the stool metagenome (Olekhnovich et al, 2023).
Obviously, the set of these abnormal species may be different in
each case.

Strain-specific features of Faecalibacterium and Bifidobacterium
MAGs linked to the melanoma immunotherapy outcome

Interestingly, 30 out of 1,422 MAGs with the level of nucleotide
identity <98% were taxonomically annotated as Faecalibacterium
spp. Eleven Faecalibacterium prausnitzii strains were associated
with positive immunotherapy outcomes in six out of seven datasets,
whereas 19 had a neutral status according to the biomarker dis-
covery protocol. To gain deeper insights, the phylogenetic tree
encompassing all 30 Faecalibacterium MAGs was reconstructed
along with reference genomes of Faecalibacterium species inhab-
iting the human gut. As an outgroup, we included the genome se-
quence of Subdoligranulum variabile DSM 15176. The results are
shown in Fig 3D. All MAGs, including the 11 biomarker MAGs, were
distributed among different clades within the tree. This could be
attributed to the high plasticity of the genomes of F. prausnitzii
species, suggesting that these MAGs likely belong to different
phylogroups. Furthermore, our phylogenetic analysis revealed
that three R biomarker MAGs, namely, SRR13068846.48_sub,
SRR16554759.1, and ERR6279651.33 belong to the species Fae-
calibacterium duncaniae (strain F. prausnitzii P9123, which de-
spite its name belongs to the F. duncaniae group (Tanno et al,
2022). It is noteworthy that only the F. duncaniae clade did not
contain neutral MAG biomarkers.

The final set of nonredundant MAGs included 12 MAGs assigned to
theBifidobacterium genus. TheseMAGs showeddifferent associations
with immunotherapy outcomes. Specifically, five of them were clas-
sified as R biomarkers (ERR6279678.43, ERR6243879.30, ERR6279683.39,
ERR6231548.21, and ERR6275661.39), one (SRR13068824.40) as a NR
biomarker, whereas the remaining six were not included in the list
of 137 MAG biomarkers. The taxonomic classification of these six
MAGs is as follows: ERR6279678.43 and ERR6243879.30 were clas-
sified as B. adolescentis, ERR6231548.21 as Bifidobacterium longum,
ERR6275661.39 as Bifidobacterium bifidum, SRR13068824.40 as Bifi-
dobacterium angulatum, and ERR6279683.39 was assigned to the
Bifidobacterium spp. without clear species annotation. To clarify
the species identity of ERR6279683.39 MAG, the phylogenetic tree
was reconstructed including all 12 MAGs and reference genomes
of Bifidobacterium species inhabiting the human gut. As an out-
group, we used the genome sequence of Gardnerella vaginalis
UMB0386 and obtained the results shown in Fig 3E. The analysis
revealed that MAG ERR6279683.39 and, unexpectedly, MAG ERR6243879.30
occupied positions on the tree between branches related to the B.
adolescentis group and the B. longum group. This observation
prompted us to further test the bifidobacterial MAGs for chimeric
assembly by GUNC (Orakov et al, 2021). Although both MAGs passed
the test based on “pass.GUNC” in the output file, a closer exami-
nation of the output files in the “gene_calls” and “diamond_output”
folders revealed that for MAG ERR6279683.39, 695 genes were
assigned to the B. longum, and almost the same number, 571

genes, were assigned to the B. adolescentis. Based on this, we
believe that MAG ERR6279683.39 may indeed be a chimeric MAG,
which probably explains its intermediate position on the tree
between two species. As for MAG ERR6243879.30, there were 895
genes assigned to the B. adolescentis and 237 genes assigned to
the B. longum. This indicates a possible contamination in this
MAG, which could explain its placement outside the branch of the
B. adolescentis group.

Functional assessment of MAG biomarkers of the melanoma
immunotherapy outcome

The annotation of the MAG biomarkers involved the use of
various functional databases, including CAZy (carbohydrate-
active enzymes, http://www.cazy.org), KEGG (Kyoto Encyclope-
dia of Genes and Genomes, https://www.genome.jp/kegg), and
MetaCyc (https://metacyc.org). This comprehensive annotation
effort resulted in the assignment of 218 CAZy categories, 5,111 KEGG
orthologous groups (KOG), and 3,676 MetaCyc Reactions (RXN).
Derived functional profiles are available in Tables S5, S6, and S7.
PERMANOVA analysis was performed to understand the relation-
ship between the gene categories in MAG biomarkers and the
phylum and immunotherapy response variables. The results in-
dicated that the abundance of all studied gene categories in MAG
biomarkers was linked to both the phylum and immunotherapy
response variables. Specifically, the content of KOG and RXN were
significantly linked to the phylum and response variables,
whereas CAZy categories profiles were also linked to the phylum,
but the relationship with the response variable was at a lower
significance level. Detailed results of these analyses are pre-
sented in Table S8.

Additional statistical tests showed that the abundance of the
KEGG and MetaCyc gene groups increased in the R biomarkers.
However, there were no significant changes in the CAZy categories
in any of the biomarker groups (Fig S3). Notably, the Bacteroidetes
MAGs tended to increase the number of CAZy categories in the R
group (Fig S4; Wilcoxon rank-sum test, adj. P = 0.07). In addition, the
Bacteroidetes MAGs R group showed an enrichment in glycoside
hydrolase (GH) families compared with NR (Wilcoxon rank-sum test,
P = 0.006). Specifically, only R biomarkers such as Bacteroides
ovatus (N CAZy = 123; GH = 70), Bacteroides xylanisolvens (N CAZy =
109; GH = 64), and Bacteroides uniformis (N CAZy = 92) were ob-
served. Among the top five MAGs with the highest number of CAZy
categories and GH families were B. ovatus (N CAZy = 78; GH = 56),
Bacteroides nordii (N CAZy = 74; GH = 41), and Parabacteroides
distasonis (N CAZy = 73; GH = 45). The complete list of Bacteroidetes
MAGs containing CAZy categories can be found in Table S9. Fur-
thermore, when analyzing the number of genes at the phylum level,
only Firmicutes and Bacteroidetes showed a statistically significant
difference in the number of KEGG and MetaCyc gene groups, as
shown in Fig S4. In addition, Fig S5 shows a two-dimensional vi-
sualization based on nonmetric multidimensional scaling of
functional profiles.

Using Fisher’s exact test and applying false discovery rate (FDR)
corrections for multiple testing, we successfully identified specific
gene groups that distinguish functional categories among MAG
biomarkers. Specifically, we found 41 KOG and 63 RXN categories
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that showed significant differences (Table S10; adj. P threshold <
0.05). Notably, all of these identified gene groups were up-regulated
in the R biomarkers. To gain an understanding of the pathways
distinguishing different biomarker groups, we performed gene set
enrichment analysis (GSEA). The results of this analysis revealed
that seven KEGG modules, six KEGG pathways, and four MetaCyc
pathways associated with amino acid (AA) and cobalamin bio-
synthesis were significantly up-regulated in the R biomarker group
(see Fig 4A). It is worth noting that according to MetaCyc-based
GSEA analysis, the PWYG-321 mycolate biosynthesis pathway
appeared to be up-regulated in the R group. Interestingly, mycolate
is an exclusive component of the cell wall of mycobacteria. We
further investigated this finding and translated the PWYG-321–
related reactions (RXNs) into the Enzyme Commission (EC) no-
menclature, followed by mapping to the KEGG database. This
analysis revealed that the resulting ECs were related to ko00061:
fatty acid biosynthesis pathway (Fig S6). Thus, we considered the
initial observation related to the mycolate biosynthesis pathway to
be an artifact of the analysis.

In addition, we explored the relationship between MAG bio-
markers and the aforementioned immunotherapy-relevant path-
ways. The results of this analysis, shown in Fig 4B, highlighted the
top five genera that contained the highest number of gene clusters
from these pathways. These genera were Faecalibacterium, Blautia,
Bacteroides, Bifidobacterium, and Ruminococcus.

Amino acid and cobalamin auxotroph/prototroph balance linked
to the immunotherapy outcome

From our results, it is clear that the pathways related to the bio-
synthesis of AAs and cobalamin show consistent GSEA results
across different gene sets. However, what piques our interest is to
explore the contribution of both producers (prototrophs) and
consumers (auxotrophs) of these vital compounds to the outcome
of melanoma immunotherapy. Our research used gapseq and flux
balance analysis to identify AA prototrophs and auxotrophs. The list
of target AAs included L-arginine, L-asparagine, L-cysteine, L-glu-
tamine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine,

Figure 4. Functional differences between metagenome-assembled genome biomarker groups.
(A) Gene Set Enrichment Analysis (GSEA) results, where the x-axis represents GSEA analysis statistics and the y-axis represents false discovery rate–adjusted P-values
for identified functional categories. GSEA statistic values take only positive values because identified pathways are only associated with immunotherapy response (R
group) but not with negative outcome (NR group). The metabolic pathway names are transcribed within the figures. (B) Bacterial genera containing genes associated with
differentially abundant KEGG and MetaCyc functional pathways. The x-axis indicates the total number of defined gene groups, whereas the y-axis corresponds to
bacterial genera. Genera belonging to bacterial phyla are highlighted in color.

Gut microbiome mediates the melanoma immunotherapy outcome Zakharevich et al. https://doi.org/10.26508/lsa.202302480 vol 7 | no 5 | e202302480 7 of 16

https://doi.org/10.26508/lsa.202302480


Gut microbiome mediates the melanoma immunotherapy outcome Zakharevich et al. https://doi.org/10.26508/lsa.202302480 vol 7 | no 5 | e202302480 8 of 16

https://doi.org/10.26508/lsa.202302480


L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan,
L-tyrosine, and L-valine. Notably, our PERMANOVA results revealed
a statistically significant association between the distribution of AA
prototrophs and auxotrophs and both strain and response vari-
ables (adj P < 0.01; Table S11). Further statistical analysis revealed
that the frequency of AA prototrophy events was higher in positive
immunotherapy outcomes, whereas AA auxotrophy events were
more frequent in negative immunotherapy outcomes (Wilcoxon
rank-sum test, adj. P = 0.01; Fig S7A). Fisher exact tests were used to
identify specific auxotrophy/prototrophy events associated with
different MAG biomarker groups. The results obtained indicate that
L-proline prototrophy is significantly increased only in R bio-
markers, whereas L-tryptophan, L-leucine, and L-isoleucine aux-
otrophy are significantly increased in NR biomarkers. At lower
significance levels, this trend persists, particularly with the absence
of increased AA auxotrophy in R biomarkers and no increase in
prototrophy in NR biomarkers (Table S11). A visual representation of
the distribution of AA auxotrophic/prototrophic events is shown in
Fig 5A.

As gapseq did not identify the cobalamin biosynthesis pathways
within the biomarker MAG sets, KOGs belonging to the cobalamin
biosynthesis KEGG modules (M00924, M00122) were selected for
further analysis. In addition, gene groups encoding cobalamin-
dependent enzymes (N = 40) and transporters (N = 6) were in-
cluded in our analysis. According to the ANOVA, the distribution of
cobalamin-related genes (biosynthesis, dependent, and trans-
porters) was subsequently associated with both strain and im-
munotherapy response variables (Table S12). Further statistical
analysis revealed an increase in the number of cobalamin bio-
synthesis genes in the R biomarkers, whereas the number of genes
encoding cobalamin-dependent enzymes remained unchanged
between the different MAG biomarker groups (Fig S7B). Fisher’s
exact test results indicated an increase in the occurrence of 15
cobalamin biosynthesis genes and 1 cobalamin-dependent enzyme
gene in positive MAG biomarkers (Table S12). By mapping to the
KEGG database, we identified KOGs associated with the cobalamin
biosynthesis modules M00924 and M00122 (Fig S8). A visual rep-
resentation of the distribution of cobalamin-related genes among
the MAG biomarkers is shown in Fig 5B.

Differential abundance of short-chain fatty acid (SCFA)
biosynthesis pathways and their association with the
immunotherapy outcome

A number of studies have shown that the SCFAs boost the overall
immunity and improve the results of immunotherapy (Arpaia et al,
2013; Furusawa et al, 2013; Park et al, 2015; He et al, 2021; Luu et al,
2021). Therefore, it is reasonable to investigate variations in the
content of SCFA biosynthesis pathways amongMAG biomarkers. The
initial assessment included the prediction of SCFA autotrophs/

phototrophs using gapseq and flux balance analysis methods.
An ANOVA using PERMANOVA revealed that SCFA production was
correlated with phyla but not with immunotherapy response var-
iables (Table S13). Furthermore, Fisher’s exact test revealed no
statistically significant differences in the predicted producers of
acetate, butyrate, and propionate between marker groups.

In particular, certain pathways responsible for acetate and
propionate production require cobalamin. Therefore, it is valuable
to examine the distribution of cobalamin-producing genes among
SCFA producers from theMAG biomarker list. Our results indicate an
increase in the number of cobalamin biosynthesis genes among the
R biomarkers of acetate and butyrate producers compared with the
NR biomarkers (Fig S9). However, no statistically significant dif-
ference in the number of cobalamin biosynthesis gene groups
among the predicted propionate products was observed between
the marker groups. The distribution of cobalamin biosynthesis
genes among the SCFA producers is visually presented in Fig S10.

The results of the previous analyses were complemented by the
catalog of predicted SCFA biosynthetic gene groups. We identified a
total of 13 SCFA pathways, including five related to acetate bio-
synthesis, five to butyrate biosynthesis, and three to propionate
biosynthesis. The presence of genes involved in SCFA biosynthetic
pathways among the MAG biomarkers is shown in Fig 5C. According
to PERMANOVA, the content of SCFA biosynthesis genes is statis-
tically significantly associated with both phyla and immunotherapy
response variables (Table 14). In addition, Fisher’s exact test and
further GSEA analysis revealed an association between the Wood–
Ljungdahl pathway of acetate biosynthesis and MAG biomarkers of
positive immunotherapy outcomes, whereas butyrate biosynthesis
from the lysine pathway was associated with negative immuno-
therapy outcomes.

Discussion

Understanding the biological mechanisms underlying the inter-
actions between the immune system and the human gut micro-
biome is central to improving the efficacy of cancer immunotherapy.
In contrast to other cancers, a sufficient amount of metagenomic
data from melanoma patients receiving immunotherapy has been
collected and is available in biological databases. By applying ad-
vanced bioinformatics techniques and reanalyzing data from these
numerous research studies, we can gain deeper insights into the
impact of gut microbial consortia on the regulation of antitumor
immunity. In addition, such research efforts will broaden our un-
derstanding of the fundamental role of the microbiota in contrib-
uting to human health.

In our research, we used genome-resolved metagenomics with
strain profiling, CoDa methods, and stool metagenomes from seven
previously published studies to identify sets of microbes associated

Figure 5. Distribution of AA auxotrophs/prototrophs and cobalamin/short-chain fatty acid biosynthesis genes in metagenome-assembled genome (MAG)
biomarkers.
(A) Bar graph showing the distribution of predicted auxotrophy/prototrophy for specific AAs or the number of gene groups involved in cobalamin biosynthesis. The
bacterial genera are defined on the x-axis. (B) Distribution of cobalamin biosynthesis genes across MAG biomarkers, with the bacterial genera plotted on the x-axis.
(S)Distribution of short-chain fatty acid biosynthesis genes amongMAG biomarkers, stratified by specific pathways. The x-axis indicates bacterial genera, and the y-axis
indicates genes involved in acetate, butyrate, or propionate biosynthesis.
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with immunotherapy success. The list of 137 reproducible between
datasets MAG biomarkers that distinguished patients based on the
success of their immunotherapy were identified, according to the
results of the analysis. Among the most consistently reproducible
MAG biomarkers associated with positive immunotherapy out-
comes were B. adolescentis, unclassified Bifidobacterium, B.
intestinihominis, and G. qucibialis. It should be noted that several
Bifidobacterium species, including B. longum and B. bifidum, have
also been identified as markers of successful immunotherapy
outcomes, albeit in fewer datasets. The existing scientific literature
supports these findings, with published studies reporting Bifido-
bacterium species as indicators of favorable immunotherapy
outcomes (Lee et al, 2021, 2022; Olekhnovich et al, 2023; Zhao et al,
2023). In addition, results from laboratory animals support these
observations (Sivan et al, 2015; Lee et al, 2021; Yoon et al, 2021). In
contrast, a meta-analysis conducted by Limeta et al (2020) was the
only study to find an association between B. intestinihominis and
improved immunotherapy outcomes. Interestingly, this bacterium
has also been shown to enhance the effects of chemotherapy
(Daillère et al, 2016) and vascular endothelial growth factor-
tyrosine kinase inhibitor treatment (Dizman et al, 2021). In turn,
G. qucibialis has previously been identified as beneficial for the
positive outcome of immunotherapy in hepatobiliary cancer (Mao
et al, 2021).

F. prausnitzii strains have also been identified as biomarkers of
positive immunotherapy outcomes. According to numerous studies
and meta-analyses, F. prausnitzii stimulates the immune system
and improves the response to immunotherapy in several types of
cancer (Chaput et al, 2017; Frankel et al, 2017; Gopalakrishnan et al,
2018; Matson et al, 2018; Peters et al, 2019; Limeta et al, 2020; Mao
et al, 2021; Spencer et al, 2021; Olekhnovich et al, 2023). In the in-
testine, F. prausnitzii is one of the major producers of the SCFAs,
including butyrate. Butyrate, a product of gut bacteria, enhances
cytotoxic immunity and maximizes the results of immunotherapy,
as shown in several studies (Bachem et al, 2019; Danne & Sokol,
2021; He et al, 2021; Luu et al, 2021). It is known that co-culturing F.
prausnitziiwith bifidobacteria increases colonization and promotes
butyrate synthesis, probably because bifidobacteria can produce
acetate, which F. prausnitzii needs for growth (Rios-Covian et al,
2015; Kim et al, 2020).

Investigation of the functional potential of MAG biomarker sets
may provide insight into processes involving the microbiota that
influence antitumor immunity. In addition, the implementation of
genome-resolved metagenomics techniques allows the study of
functions directly associated with specific genomes, improving the
quality of analysis and facilitating interpretation. Initially, MAG
biomarkers were evaluated using the CAZy database. High CAZy
category counts in MAG Bacteroidetes have been associated with
successful immunotherapy outcomes. Among the R biomarkers,
Bacteroides ovatus, Bacteroides xylanisolvens, Bacteroides uni-
formis, Bacteroides nordii, and P. distasonis ranked in the top five
MAGs with the highest amount of CAZy categories and GH families.
Certain Bacteroidetes are known for their ability to break down
glycans using thousands of different enzyme combinations
(Lapébie et al, 2019). The utilization of polysaccharides by Bac-
teroides, namely, B. uniformis, has been shown to influence
community dynamics and butyrate synthesis in another study (Feng

et al, 2022). In its turn, experiments on laboratory animals dem-
onstrated the improving effect of immunotherapy results using
dietary fiber (Spencer et al, 2021). This suggests that glycan di-
gestion by Bacteroides may promote changes in the microbiota
leading to increased butyrate synthesis (the immunomodulatory
properties of which were outlined above), which may be associated
with improved immunotherapy response.

Further in-depth functional analysis revealed that the group with
R biomarkers had elevated levels of seven KEGG modules, six KEGG
pathways, and four MetaCyc pathways related to the production of
compounds necessary for immunity, including AA, medium- and
long-chain fatty acids, and cobalamin. In addition, the list of the top
five genera containing the most genes from these metabolic
pathways included Faecalibacterium, Blautia, Bacteroides, Bifido-
bacterium, and Ruminococcus. The effect of AAs in supporting
immune function has been extensively documented in various
studies and does not require further detailed evidence or inter-
pretation (Kelly & Pearce, 2020). Microbiome-producedmedium- and
long-chain fatty acids have the potential to stimulate antitumor
immunity by binding to free fatty acid receptors. However, the links
between cobalamin produced by gut microbes and human im-
munity are less straightforward. On the one hand, microbially
derived cobalamin and other corrinoids may play an ecological
role, being distributed by producers within the community and
used by cobalamin-auxotrophic microbes (Degnan et al, 2014). On
the other hand, corrinoids can be shared between microbes and
Caco epithelial cells via vesicular transport (Juodeikis et al, 2022).
Therefore, adding additional cobalamin from gut microbes as a
supplement to the dietary form may potentially help the immune
system’s ability to fight tumors. In addition to functional potential
analysis, the metabolic reconstruction approach revealed that AA
and cobalamin prototrophs were associated with positive immu-
notherapy outcomes, whereas auxotrophs were associated with
unfavorable outcomes. It is conceivable that “altruistic” bacterial
behavior may make them more beneficial to the host and build
community resilience.

Some studies have shown that SCFAs improve overall immunity
(Arpaia et al, 2013; Furusawa et al, 2013; Park et al, 2015) and in-
fluence the outcome of immunotherapy (He et al, 2021; Luu et al,
2021). The MAG biomarker sets did not show significant differences
in their predicted ability to produce acetate, butyrate, or propio-
nate. However, the Wood–Ljungdahl (WL) acetate production
pathway was associated with successful treatment outcomes,
whereas the butyrate biosynthesis pathway via lysine degradation
was associated with unsuccessful immunotherapy, according to the
analysis of the reconstructed SCFA biosynthetic pathways. Notably,
three bacterial genera, known to produce major SCFAs via the WL
pathway (Blautia, Fusicatenibacter, and Oliverpabstia), are also
involved in cobalamin biosynthesis (see Fig 5B). Notably, we did not
find any “fdh” genes in Blautia genomes (see Fig 5C). Perhaps, in this
case, Blautia is able to use the formate produced by the bifido-
bacteria (Rios-Covian et al, 2015; Trischler et al, 2022). The change in
activity of the WL pathway may be driven by a cross-feeding re-
lationship with Bifidobacterium species (e.g., B. bifidum) as they are
specialized carbohydrate-fermenting species that produce the
substrates for CO2 fixation by the WL pathway (Plichta et al, 2016). In
addition, the WL pathway shows a kind of positive feedback—it
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provides additional acetate production, which in turn influences
the increase in butyrate production (Koh et al, 2016). This strategy
appears to be more advantageous because it does not use other
important metabolites, in this case AA, for the synthesis of SCFA. In
addition, acetate produced by the gut microbiota can directly
improve immune function (Jugder et al, 2021; Yu et al, 2023).

Recently published studies showed the effectiveness of FMT
received from R patients (Baruch et al, 2021; Davar et al, 2021) or
healthy volunteers for improving the outcome of immunotherapy
(Routy et al, 2023). According to the obtained results, the microbiota
structure of R patients differed from the microbiota of NRs even
before the FMT procedure was performed. Therefore, it is rea-
sonable to assume that the R patient’s microbiota responded to the
donor feces in a way that enhanced antitumor immunity, whereas
the NR patient’s microbiota did not respond properly. Perhaps
because of the absence (insufficient amount) of specific bacteria in
the microbiota of the NRs, the donor feces were unable to produce
such an improvement. Previous experiments in laboratory animals
have suggested the possibility of supplementing cobalamin defi-
ciency with fecal matter (Barnes & Fiala, 1959; Morgan et al, 1964).
Absorption of donor fecal cobalamin is thought to enhance cyto-
toxic immunity, which may have a beneficial effect on immuno-
therapy outcomes. In addition, fecal corrinoids, which are
inaccessible to humans, can be used by corrinoid auxotrophs in the
gut for improved growth and metabolism. As the specter of colo-
nizers was similar between R and NR patients in our previous
analysis (Olekhnovich et al, 2023), it is possible that the FMT
mechanism in this particular case is related to fecal cobalamin (or
other metabolites) rather than donor-derived microbial coloniza-
tion. On the other hand, the potential impact of donor microor-
ganisms cannot be ignored. The state of the gut microbiota and the
efficacy of immunotherapy may both be improved by the ability of
donor microorganisms to restore lost ecological links, which are
less degraded in Rs’ compared with NRs’.

Based on the results obtained and data from the scientific lit-
erature, it is evident that fiber consumption may have a positive
impact on melanoma immunotherapy outcomes (Spencer et al,
2021). However, further research in large patient cohorts is essential
to identify themost effective fiber types and develop precise dosing
regimens for clinical use. Although studies in laboratory animals
using melanoma models have shown that the use of bifidobacteria
and lactobacteria can enhance antitumor immunity (Sivan et al,
2015; Lee et al, 2021; Yoon et al, 2021; Si et al, 2022; Gao et al, 2023), it is
important to note that Bifidobacterium spp. are also emerging as
reproducible biomarkers of positive immunotherapy outcomes in
studies and meta-analyses using stool metagenomes from mela-
noma patients (Lee et al, 2022; Olekhnovich et al, 2023; Zhao et al,
2023). Therefore, the incorporation of “classical probiotics” into
immunotherapy regimens is promising on the one hand. On the
other hand, the influence of commercial probiotics on immuno-
therapy outcomes has been reported to have negative effects
(Spencer et al, 2021). It has been suggested that bifidobacteria may
serve as markers of the “right” state of the human microbiota. The
use of “classical” probiotics can be supplemented with butyrate-
producing Clostridium byturicum, which increases the survival rate
of metastatic renal cell carcinoma patients receiving immuno-
therapy (Dizman et al, 2022). Another potential probiotic candidate

for improving immunotherapy outcomes could be Propionibacte-
rium freudenreichii because of its ability to produce cobalamin.
Cobalamin-producing bacteria strengthen interactions within the
gut microbiota and intestinal barrier tight junctions (Qi et al, 2023),
which is beneficial for host resistance to pathogen infection and
potentially beneficial for immunotherapy outcomes. However, the
most promising prospects lie in the potential development of F.
prausnitzii–based probiotics for clinical use (Khan et al, 2023). As
noted above, this bacterium has been associated with the en-
hancement of antitumor immunity in numerous studies, including
our own analysis. Thus, the use of other novel types of probiotics
can be considered in the future as a potential direction for im-
proving antitumor immunity.

Summarizing the results and hypothesis, it is evident that the
mutualistic relationships of human gut microbes play a crucial role
in the establishment aimed at enhancing antitumor immunity. Here
are the key points of the conclusions drawn from the interpretation
of the analysis results: (1) polysaccharide utilization and substrate
sharing: Bacteroidetes species degrade the complex carbohydrates
and produce substrates for other community members, including
butyrate producers; (2) cobalamin sharing: cobalamin producers
share cobalamin with Bacteroidetes and other cobalamin auxo-
trophs. Bacteroidetes, in turn, can help transport cobalamin within
intestinal epithelial cells via extracellular vesicles, facilitating its
distribution to other microbial communities and the host. This
cooperative exchange ensures that essential nutrients are avail-
able to different members of the microbiota, thereby building
community resilience; (3) cross-feeding in acetate/butyrate
metabolism: butyrate producers use acetate derived from Bifido-
bacterium and/or obtained through the WL pathway for growth and
butyrate production. This cross-feeding relationship results in
increased production of both acetate and butyrate for the benefit of
the host. The use of additional carbon sources such as CO2 in theWL
pathway may allow for the production of more acetate and buty-
rate, freeing up resources for the production of other important
metabolites. Interestingly, this analysis suggests that it is not the
ability to produce butyrate per se but rather the cross-feeding
between bacteria associated with butyrate production that con-
tributes to improved immunotherapy outcomes. This underscores
the importance of microbial interactions in boosting immunity; (4)
altruistic behavior: the microbiota beneficial for immunotherapy
exhibit “altruistic” behavior, producing important metabolites such
as amino acids and cobalamin and can distribute them to com-
munity members, which can improve the host’s antitumor immune
status. In contrast, the harmful microbiota behave “selfishly” and
compete with the host for these essential resources, leading to
weakened immunity.

In summary, our findings have advanced the understanding of
the biological mechanisms of gut microbiome influence on the
melanoma immunotherapy outcome and provided a foundation for
further investigations aimed at enhancing immunotherapy efficacy
through microbiome modulation. In summary, our findings have
advanced the understanding of the biological mechanisms of
gut microbiome influence on the melanoma immunotherapy
outcome and provided a foundation for further investigations
aimed at enhancing immunotherapy efficacy through microbiome
modulation.
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Materials and Methods

Metagenomic datasets, analysis, and data preprocessing

Sequencing data from gut metagenomic samples from melanoma
patients were collected from seven published studies (Frankel et al,
2017; Gopalakrishnan et al, 2018; Matson et al, 2018; Baruch et al,
2021; Davar et al, 2021; Spencer et al, 2021; Lee et al, 2022). These data
were preprocessed as follows. metagenomic data were quality-
assessed using FastQC (https://github.com/s-andrews/FastQC).
Technical sequences and low-quality bases were removed from the
data using the Trimmomatic tool (Bolger et al, 2014). Human se-
quences present in the metagenomic samples were eliminated
using bbmap (Bushnell, 2014) and the human genome GRCh37
(https://www.ncbi.nlm.nih.gov/genome/guide/human). All pre-
processing computational steps were executed using the Assnake
metagenomic pipeline (https://github.com/ASSNAKE). Detailed
information on the characteristics of the metagenomic datasets
and preprocessing statistics can be found in our previous study
(Olekhnovich et al, 2023).

Construction of a nonredundant catalog of MAGs

The sequencing data obtained from the preprocessing step were used
to construct metagenomic contigs using the MEGAHIT assembler (Li
et al, 2015). Contigs longer than 1,000 base pairs were retained for
further analysis. The assembly results were then subjected to binning
using twomethods: MaxBin2 (Wu et al, 2016) and MetaBAT2 (Kang et al,
2019). DASTool was employed to create optimized, nonredundant bin
sets for each sample (Sieber et al, 2018). To construct a nonredundant
catalog of MAGs, the dRep tool was used with specific parameters:
–completeness 75 and –contamination 10 –P_ani 0.9 –S_ani 0.98 (Olm
et al, 2017). To assess the final quality of the resulting bin set, the
CheckM framework was applied (Parks et al, 2015). Taxonomic anno-
tation of the resulting MAGs catalog was performed using the Genome
Taxonomy Database–Tk tool (Chaumeil et al, 2022; Parks et al, 2022). A
phylogenetic tree incorporating all MAGs sequences was constructed
utilizing the obtained CheckM AA marker set and the FastTree tool
(Price et al, 2010). Multiple alignment of CheckM AA markers was
performed usingMUSCLE (Edgar, 2004). The EMPress tool (Cantrell et al,
2021), included in the QIIME2 framework (Bolyen et al, 2019), was used
to visualize the phylogenetic tree of MAG biomarkers.

inStrain was used to obtain MAG abundance profiles (Olm et al,
2021). Using the abundancematrix of MAGs obtained in the previous
step, the Shannon index was calculated using the diversity function
in the vegan v2.6-4 package for GNU/R (https://github.com/
vegandevs/vegan). Robust principal component analysis, imple-
mented in the DEICODE package, was used for beta diversity as-
sessment and two-dimensional visualization (Martino et al, 2019).
The associations between experimental variables and microbial
composition were evaluated using PERMANOVA with 10,000 per-
mutations, implemented in the “adonis” function of the vegan
v2.6-4 package, and the robust Aitchison distance calculated by
DEICODE.

The results were visualized using the ggplot2 v3.4.2 library for
GNU/R. (https://ggplot2.tidyverse.org).

Strategy for discovering MAG biomarkers

The identification of MAG biomarkers associated with the immu-
notherapy outcome was performed in a similar manner to the
previous article (Olekhnovich et al, 2023). In the first step, MAGs
whose relative abundance was associated with immunotherapy
outcome were identified using the Songbird (Morton et al, 2019).
Absolute value threshold of the Songbird differential was >0.3. The
log ratios of the selected MAGs were calculated using Qurro
(Fedarko et al, 2020), whereas the statistical significance of the log
ratios was accessed using theWilcoxon rank-sum test implemented
in the basic GNU/R function. The second step was to create a list of
consistent MAG biomarkers using the following methodology: (1)
microbial species associated with a positive immunotherapy out-
come in more than one dataset were added to the list; (2) MAGs
associated with a negative outcome in at least one dataset were
excluded from the list of MAG biomarkers, regardless of the number
of datasets in which they were associated with a positive outcome.
The specific MAG biomarkers associated with adverse outcomes
were also identified. OrthoFinder was used to construct a phylo-
genetic tree using MAG biomarker sequences. The resulting MAG
biomarker phylogenetic tree was visualized using the EMPress tool.
The ggplot2 v3.4.2 library for GNU/R was used to visualize the
results.

Python libraries such as pandas (https://pandas.pydata.org),
numpy (https://numpy.org), matplotlib (https://matplotlib.org),
scikit-learn (https://scikit-learn.org), scipy (https://scipy.org) were
used to build machine learning models based on MAG relative
abundance values and log ratios with subsequent statistical
evaluation by the Wilcoxon rank-sum test.

Phylogenetic tree construction of Faecalibacterium and
Bifidobacterium species

MAGs assigned to the genera Faecalibacterium (30 MAGs) and
Bifidobacterium (12 MAGs) were used for phylogenetic analysis.
Open reading frames and translated AA sequences from selected
MAGs were predicted using Prodigal version 2.6.3 (Hyatt et al, 2010).
Phylogenetic trees based on predicted sequences were recon-
structed using OrthoFinder version 2.5.4 (Emms & Kelly, 2019)
with default parameters. Genomes of species inhabiting the human
gut were selected as references. The genome sequence of G.
vaginalis strain UMB0386 (GenBank: https://www.ncbi.nlm.nih.gov/
genbank/PKJK01000001.1) was used as an outgroup for Bifido-
bacterium, whereas the genome sequence of S. variabile strain
DSM 15176 (GenBank: https://www.ncbi.nlm.nih.gov/genbank/
ACBY02000001.1) was used as an outgroup for Faecalibacterium.
Phylogenetic trees were visualized using the ggplot2 v3.4.2 and
ggtree v3.6.2 packages for GNU/R (Xu et al, 2022). To further control
the quality of the Bifidobacterium MAGs, the sequences were
checked by GUNC v1.0.5 (Orakov et al, 2021) to filter out chimeric
genomes based on the “pass.GUNC” column in the gunc_output file.

Functional profiling of MAG biomarkers

To investigate the presence of CAZy in MAGs, we performed a series
of bioinformatic analyses. AA sequences, predicted by Prodigal
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version 2.6.3 (Hyatt et al, 2010), were aligned against bacterial
protein sequences from the CAZy database (http://www.cazy.org)
(Drula et al, 2022) and the KEGG database (https://www.genome.jp/
kegg) (Kanehisa et al, 2017) using the blastp mode of DIAMOND
(Buchfink et al, 2021) (version 2.0.15) with a stringent threshold of
80% identity and 80% query coverage. In addition, we used the
gapseq method (Zimmermann et al, 2021) in conjunction with the
MetaCyc database (https://metacyc.org) (Caspi et al, 2020) for
further functional annotation of MAG biomarkers.

Nonmetric multidimensional scaling using the Bray–Curtis dis-
similarity metric was used to visualize the functional data in two
dimensions (https://github.com/vegandevs/vegan). To measure
dissimilarities in the functional profiles among MAG biomarkers, we
performed PERMANOVA using the “adonis” function from the vegan
package and the Bray–Curtis metric. Differences in the number of
functional categories between biomarker sets were assessed using
the Wilcoxon rank-sum test with FDR correction for multiple testing.
Furthermore, differences in functional content between the MAGs
groups were determined using one-sided Fisher exact tests with
FDR correction, implemented in GNU/R.

To detect differences in the KEGG/MetaCyc gene sets between
the MAGs groups, we used GSEA from Bioconductor’s “piano”
package (Väremo et al, 2013). Specifically, we used the “reporter
feature algorithm” with a gene set significance threshold of adj. P <
0.01 and gseaParam = 1. FDR-corrected P-values derived from the
Fisher exact test were used as input data for the GSEA analysis. Only
genes with uncorrected P-values < 0.5 were included in the analysis.
Results were visualized using the ggplot2 v3.4.2 and pheatmap
v1.0.12 (https://github.com/raivokolde/pheatmap) libraries for
GNU/R.

Metabolic pathways responsible for acetate, butyrate, and
propionate production were focused for the additional analysis. For
acetate, we considered six possible biosynthesis pathways, in-
cluding the WL pathway and a recently discovered pathway in-
volving succinyl-CoA:acetate CoA-transferase and succinyl-CoA
synthetase (Koh et al, 2016; Esposito et al, 2019; Zhang et al, 2021).
Meanwhile, for butyrate and propionate, we explored four and three
possible synthetic pathways, respectively (Vital et al, 2014; Frolova
et al, 2022) (refer to Table S15 for details). We assembled a reference
catalog of gene products for each pathway, resulting in 4,563 AA
sequences for acetate pathways, 2,744 for butyrate pathways, and
415 for propionate pathways. Subsequently, DIAMOND (version
2.0.15) blastp searches (Buchfink et al, 2021) and the program
gapseq (v1.1) (Zimmermann et al, 2021) with default parameters
were used to validate the presence of these pathways. In addition,
we used gapseq profiles and flux balance analysis to predict AAs
and SCFA consumers/producers (Gelius-Dietrich et al, 2013;
Zimmermann et al, 2021).

Data Availability

In this study, we used open access data from the NCBI-EBI Se-
quence Read Archives, identified by the following BioProjects
accession numbers: PRJNA397906, PRJEB22893, PRJNA399742,
PRJNA678737, PRJNA672867, PRJNA770295, and PRJEB43119. Exten-
sive results from our project are detailed in the article text, along

with supporting materials. We have also provided a catalog of
metagenome-assembled genomes (MAGs), taxonomic annotation
results, phylogenetic trees, and Qurro and EMPress profiles for the
QIIME2 viewer. These resources have been made available through
the figshare service, which can be accessed via the following link:
10.6084/m9.figshare.24146913.v5.
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Lorentzon M, Bäckhed F (2023) Synergy and oxygen adaptation for
development of next-generation probiotics. Nature 620: 381–385.
doi:10.1038/s41586-023-06378-w

Kim H, Jeong Y, Kang S, You HJ, Ji GE (2020) Co-culture with Bifidobacterium
catenulatum improves the growth, gut colonization, and butyrate
production of Faecalibacterium prausnitzii: In vitro and in vivo
studies. Microorganisms 8: 788. doi:10.3390/microorganisms8050788

Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary
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